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In this paper the problem of linear thermoelasticity in a laminate with functional gra-
dation of properties is considered. In micro level this laminate is made of two different
materials, microlaminas, distributed non-periodically but also not randomly along one
of directions, what in macro level results in aforementioned functionally gradation of
laminate properties. In order to describe behavior of such structure, equations of two
models are here presented – the tolerance and the tolerance-asymptotic model. Both are
obtained by the tolerance averaging technique. The basic aim of this work is to analyse
the influence of some terms from these averaged equations on the distribution and the
values of the displacements and the temperature functions. To solve the equations of
two proposed models the finite difference method is used.

Keywords: functionally graded laminates, thermoelasticity, tolerance modelling, finite
difference method.

1. Introduction

In this work the thermoelasticity issue in functionally graded laminate [1] is con-
sidered. The cells of this laminate are composed of two sublayers of different com-
ponents. The thickness of the cells, called the microstructure parameter is constant
and denoted by λ, what is shown in Fig. 1. Therefore the microstructure is realized
as uniform distribution of the cells (λ =const.). The macroscopic properties of these
structure are changing continuously along direction x1, normal to the laminas.

In reference to the functionally graded laminates (FGL) the basic cell cannot be
defined in a simply way, so various phenomena related to these structures are con-
sidered in relation to micromechanical models with idealized geometry. To analyze
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the laminates, where the distribution function of material properties is non-periodic,
the assumptions of idealization analogous to those for periodic composites, can be
used.

Among all methods, applied to the macroscopically homogeneous structures,
asymptotic homogenization [2-4] and homogenization based on the microlocal pa-
rameters [5] should be mentioned. These methods can be modified and adopted to
description of structures with functional gradation of properties.

materialNo. 2 materialNo.1

λ

1x

L1

L2

2x

Figure 1 The cross-section of considered laminate

As alternative methods, which can be used in the analysis of functionally graded
structures, we can mention the higher order theory [6] and the boundary element
method [7].

Unfortunately, most of proposed approaches do not take into account the effect
of the microstructure size on the overall behavior of considered laminates. In order
to take into account this impact, the tolerance averaging technique is used [8-9].
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This technique is expanded and applied in many publications to analyze various
issues concerning periodic as well as functionally graded structures. Among them
are thermoelasticity problems [10-12], thermal issues [13-15], dynamic [16-20] and
stability problems [21].

Moreover in the analysis of various issues related to the composites and lay-
ered structures the finite element method [22] or layerwise theory and a differential
quadrature finite element method [23] can be used.

The basic aim of this work is to obtain and to present averaged equations for
two distinct models, the tolerance and the tolerance-asymptotic one, describing
linear thermoelasticity in transversally graded laminates and including the terms
responsible for the full connection between the temperature and displacement field.
Additional goals are to analyze the influence of these terms on the distribution and
values of sought unknowns and to take into account the effect of the microstructure
in considered issue.

2. Modelling foundations and procedures

The thermoelasticity issue for the functionally graded laminates can be described
by the known Eqs. (1):

∇ · (C :∇u−Bθ)− ρü = 0

∇ · (K · ∇θ)− cρθ̇ = T0B :∇u̇
(1)

where the vector of total displacements is denoted by u = (u1, u2, u3)
T, the to-

tal temperature is denoted by θ. Tensor of elasticity C (wherein components are
denoted by Cijkl), tensor of conductivity K (wherein components are denoted by
kij), tensor of thermal extensions B (wherein components are denoted by bij), mass
density ρ and specific heat c are non-continuous, highly-oscillating and tolerance-
periodic material properties, where indices i, j, k, l run over 1, 2, 3.

The main aim of the application of the tolerance averaging technique is to
replace the system of differential equations (1) with highly-oscillating, tolerance-
periodic and non-continuous coefficients, by equations, where the coefficients are
slowly-varying. This technique is based on many concepts, and among them are
the averaging operation, tolerance-periodic, slowly-varying and highly-oscillating
functions.

By ∂if the gradient of the function f is denoted, where i takes values 0, 1, 2
and Π = Ω×Ξ is a bounded area included in R3. Coordinates in Ω ∈R are denoted
by x = x1 or z = z1, while in Ξ are denoted by ς = (ς1, ς2), where Ξ is an area
included in R2. The basic cell is defined as ∆≡(−λ/2, λ/2) and ∆(x) = x+∆ is a
cell with the centre in x ∈R.

The averaging operator is defined by Eq. (2):

< ∂if > (x) ≡ 1

|∆|

∫
∆(x)

f̃ (i)(x,z)dz (2)

where z ∈ ∆(x ) and by f̃ (i)(x, · ) a periodic approximation of the gradient ∂if () in
∆(x ) is denoted.
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If the terms given by (3) are fulfilled, then function f ∈ Hr(Ω) can be called
the tolerance periodic-function, in reference to the basic cell ∆ and tolerance pa-
rameter δ:

(∀x ∈ Ω)
(
∃f̃ (i)(x, · ) ∈ H0(∆)

) (∥∥∂if( · )− f̃ (i)(x, · )
∥∥∥
H0(Ωx)

≤ δ

)
∫
∆(·) f̃

(i)( · ,z)dz ∈ C0(Ω̄)
(3)

for every i = 0, 1, . . . ,r, Ωx is defined by Eq. (4):

Ωx = Ω ∩
∪

z∈∆(x)

∆(z) , x ∈ Ω (4)

and H 0(∆) is a space of ∆-periodic functions, which are square integrable.
Continuous function u can be called the slowly-varying function, in reference to

the basic cell ∆ and tolerance parameter δ, if it is a tolerance-periodic function and
the condition given by Eq. (5) is fulfilled:

(∀x ∈ Ω)
(
ũ(i) (x,·)

∣∣
∆(x)

= ∂iu(x)
)

(5)

In other words, periodic approximation of ∂iu(·) in ∆(x ) for every xϵΩ is a constant
function.

Essentially bounded function h can be called the highly-oscillating function, in
reference to the basic cell ∆ and tolerance parameter δ, if Eq. (6) is satisfied:

(∀x ∈ Ω)
(
h̃(i) (x,·)

∣∣
∆(x)

= ∂ih̃(x)
)

(6)

and h is a tolerance-periodic function.
The tolerance modelling is based on two main assumptions. The first one is the

micro-macro decomposition, where the basic unknowns (the temperature and the
displacements field) can be taken as sums of the averaged and the oscillating parts,
according to Eqs. (7):

ui (x,ς,t) = wi (x, ς,t) + hm (x) vim (x, ς,t)
θ (x, ς,t) = ϑ (x, ς,t) + ga (x)ψa (x, ς,t)

(7)

The oscillating part can be expressed as sums of products of known fluctuation
shape functions and the fluctuation amplitudes, which are the new basic unknowns.
The macrodisplacements wi, i takes values 1, 2, 3, and the macrotemperature ϑ –
the basic unknowns and the fluctuation amplitudes of the displacements Vim and
the temperature ψa – the new basic unknowns are the slowly-varying functions
of the coordinate x 1. The fluctuation shape functions of the displacements and
the temperature, denoted by hm and ga, respectively, have to be defined for each
analyzed case where a = 1,. . . ,N andm = 1,. . . ,N. In this note one fluctuation shape
function is only assumed (N = 1), namely the saw type function. This fluctuation
shape function guarantees the continuity of the displacements and the temperature
between the layers and between the sublayers.
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The second assumption in tolerance modelling is the periodic approximation of
kth derivatives of functions of displacements and temperature, which can be defined
for k≥1 according to Eqs. (8):

ũ
(k)
i (x,z,ς) = ∇kwi (x, ς) + ∂kh̃m (x,z) vim (x, ς) + h̃m (x,z) ∇̄kvim (x, ς)

θ̃(k) (x,z, ς) = ∇kϑ (x, ς) + ∂kg̃a (x,z)ψa (x, ς) + g̃a (x,z) ∇̄kψa (x, ς)
(8)

where z ∈ ∆(x ), x ∈ Ω and ς ∈ Ξ.
Averaged equations of tolerance model are obtained by using the extended sta-

tionary action principle, where the action functional is defined according to Eq.
(9):

J (θ,u) =

∫ t1

t0

∫
Ω

L (x,t,θ,∇θ,u,u̇,∇u,p,p) dΩdt (9)

wherein Lagrangian L is assumed in the form of Eq. (10):

L =
1

2
(ρu̇ · u̇−∇u : C : ∇u+∇θ ·K · ∇θ) + p · u+ pθ (10)

Parameters p and p are in the form of Eqs. (11):

p = −∇ · (Bθ)
p = cρθ̇ + T0B : ∇u̇

(11)

and represent invariational constitutive laws.
Then by using the assumptions (7) and (8), the action functional can be rede-

fined, following Eq. (12):

J (ϑ,ψa,w,vm) (12)

=

∫ t1

t0

∫
Ω

Lgh

(
x,t,ϑ,∇ϑ,ψa,∇ψa,w,ẇ,∇w,vm,v̇m,∇vm,
⟨p⟩ , ⟨pga⟩ , ⟨p⟩ , ⟨phm⟩

)
dΩdt

and by doing appropriate averaging and transformations, Lagrangian Lgh can be
defined in the form of Eq. (13):

Lgh =
1

2
(⟨ρ⟩ ẇ · ẇ + ⟨ρhmhn⟩ v̇m · v̇n −∇w : ⟨C⟩ : ∇w

−vm · ⟨∂hm · C · ∂hn⟩ · vn)

−1

2

(
∇vm : ⟨Chmhn⟩ : ∇vm −∇ϑ · ⟨K⟩ · ∇ϑ− ψa

⟨
∂ga ·K · ∂gb

⟩
ψb

)
(13)

+
1

2

(
∇ψa ·

⟨
Kgagb

⟩
· ∇ψb

)
−∇w : ⟨C · ∂hm⟩ · vm −∇w : ⟨Chm⟩ : ∇vm

−∇vm : ⟨Chm · ∂hn⟩ · vn +∇ϑ · ⟨K∂ga⟩ψa +∇ϑ · ⟨Kga⟩ · ∇ψa
+∇ψa ·

⟨
Kga · ∂gb

⟩
ψb + ⟨pg⟩ ·w + ⟨pghm⟩ · vm + ⟨pgh⟩ · ϑ+ ⟨pghga⟩ · ψa

where pg and pgh – modified invariational constitutive laws, are defined in the form
of Eqs. (14) and (15)

⟨pg⟩ = −⟨∇ ·B⟩ϑ− ⟨B⟩ · ∇ϑ− ⟨(∇ ·B) ga⟩ψa − ⟨B · ∂ga⟩ψa − ⟨Bga⟩ · ∇ψa (14)
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⟨pgh⟩ = ⟨cρ⟩ ϑ̇+ ⟨T0B⟩ :∇ẇ + ⟨T0B · ∂hm⟩ : v̇m + ⟨T0Bhm⟩ : ∇v̇m (15)

and by assuming that the variation of functional δJ (ϑ,ψa, w ,vm) is equal to zero,
the variation δLgh is calculated, which leads to Eqs. (16):

∂Lgh

∂ϑ −∇ ·
(
∂Lgh

∂∇ϑ

)
= 0

∂Lgh

∂ψa
−∇ ·

(
∂Lgh

∂∇ψa

)
= 0

∂Lgh

∂w − ∂
∂t

(
∂Lgh

∂ẇ

)
−∇ ·

(
∂Lgh

∂∇w

)
= 0

∂Lgh

∂vm
− ∂

∂t

(
∂Lgh

∂v̇m

)
−∇ ·

(
∂Lgh

∂∇vm

)
= 0

(16)

called the Euler-Lagrange equations. Then the derivatives of Lagrangian Lgh are
calculated and combining with these equations, Eqs. (17) are obtained:

⟨cρ⟩ ϑ̇−∇ ·
(
⟨K⟩ · ∇ϑ+ ⟨K · ∂ga⟩ψa + ⟨Kga⟩ · ∇ψa

)
= − ⟨T0B⟩ : ∇ẇ − ⟨T0B · ∂hm⟩ · v̇m − ⟨T0B · hm⟩ : ∇vm⟨
cρgagb

⟩
ψ̇b −∇ ·

(⟨
Kgagb

⟩
∇ψb + ⟨Kga⟩ · ∇ϑ+

⟨
Kga∂gb

⟩
ψb

)
+
⟨
∂ga ·K · ∂gb

⟩
ψb + ⟨K · ∂ga⟩ · ∇ϑ+

⟨
Kgb∂ga

⟩
· ∇ψb

= − ⟨T0Bga⟩ : ∇ẇ − ⟨T0Bga · ∂hm⟩ · v̇m − ⟨T0Bgahm⟩ : ∇v̇m

∇ ·
(
⟨C⟩ : ∇w + ⟨C · ∂hm⟩ · vm + ⟨Chm⟩ : ∇vm

)
= ⟨ρ⟩ ẅ+ ⟨B⟩ · ∇ϑ (17)

+ ⟨B · ∂ga⟩ψa+ ⟨Bga⟩ · ∇ψa + ⟨∇ ·B⟩ϑ+ ⟨(∇ ·B) ga⟩ψa
∇ ·

(
⟨Chmhn⟩ : ∇vn + ⟨Chm⟩ : ∇w + ⟨Chm · ∂hn⟩ · vn

)
− ⟨∂hm · C · ∂hn⟩ · vn

−⟨C · ∂hm⟩ : ∇w − ⟨Chn · ∂hm⟩ : ∇vn= ⟨ρhmhn⟩ v̈n+ ⟨Bhm⟩ · ∇ϑ
+ ⟨Bhm · ∂ga⟩ψa+ ⟨Bgahm⟩ · ∇ψa + ⟨(∇ ·B)hm⟩ϑ+ ⟨(∇ ·B) gahm⟩ψa

which are the tolerance model equations, where the double-underlined terms are
responsible for the full connection between the temperature and the displacements.

Directly from Eqs. (17), by omitting the terms of order of microstructure pa-
rameter λ, the equations of the tolerance-asymptotic model are obtained in the form
of Eqs. (18):

⟨cρ⟩ ϑ̇−∇ · (⟨K⟩ · ∇ϑ+ ⟨K · ∂ga⟩ψa) = − ⟨T0B⟩ : ∇ẇ − ⟨T0B · ∂hm⟩ · v̇m⟨
∂ga ·K · ∂gb

⟩
ψb + ⟨K · ∂ga⟩ · ∇ϑ = 0 (18)

∇ · (⟨C⟩ : ∇w + ⟨C · ∂hm⟩ · vm)= ⟨ρ⟩ ẅ+ ⟨B⟩ · ∇ϑ+ ⟨B · ∂ga⟩ψa + ⟨∇ ·B⟩ϑ
⟨∂hm · C · ∂hn⟩ · vn + ⟨C · ∂hm⟩ : ∇w =0

which omit the influence of the microstructure size. The double underlined terms
in (18) are responsible for fully coupling of temperature and displacement field.

3. Example

The problem under consideration was non-stationary issue of two-dimensional ther-
moelasticity in laminate, cf. Fig. 1, made of two different materials.
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For both sublayers the material properties such as Young’s modules E, Poisson’s
ratios υ, mass densities ρ, expansion coefficients α, specific heats c and components
of tensor of conductivity kijwere defined. Based on these properties the Lame’s
constants Λ and µ, as components of tensor of elasticity Cijkl and components of
tensor of thermal extensions bij , were calculated, where i, j, k, l = 1, 2, 3. The
trigonometric distribution function of material properties was assumed according
to Eq. (19):

v1 (x1) = sin

(
x1
L1

)
(19)

where L1 was a dimension of the composite along x 1 direction normal to the laminas.
Based on Eqs. (17) and the assumption of the plane strain state, the equations

of the tolerance model for this specific issue were obtained in the form of Eqs. (20):

∂1 (< C1111 > ∂1w1+ < C1122 > ∂2w2+ < C1111∂h > v1)

− (< b11 > ∂1ϑ+ < b11∂g > ψ)

= −∂2 (< C1221 > ∂1w2+ < C1212 > ∂2w1+ < C1221∂h > v2)+ < ρ > ẅ1

∂1 (< C2121 > ∂1w2+ < C2112 > ∂2w1+ < C2121∂h > v2)

+∂2 (< C2211 > ∂1w1)

= −∂2 (< C2222 > ∂2w2+ < C2211∂h > v1)+ < b22 > ∂2ϑ + < ρ > ẅ2

∂2 (< C1212hh > ∂2v) − < C1111∂h > ∂1w1− < C1122∂h > ∂2w2

=< C1111∂h∂h > v1 + < ρhh > v̈1 (20)

∂2 (< C2222hh > ∂2v2) − < b22gh > ∂2ψ − < C2121∂h > ∂1w2

=< C2112∂h > ∂2w1+ < C2121∂h∂h > v2+ < ρhh > v̈2

∂1 (< k11 > ∂1ϑ+ < k11∂g > ψ) + ∂2 (< k22 > ∂2ϑ)− < cρ > ϑ̇

= < T0b11 > ∂1ẇ1 +< T0b22 > ∂2ẇ2 +< T0b11∂h > v̇1

∂2 (< k22gg > ∂2ψ)− < k11∂g > ∂1ϑ− < k11∂g∂g > ψ

=< cρgg > ψ̇+< T0b22gh > ∂2v̇2

and directly from these equations, by neglecting the terms dependent explicitly
on the microstructure parameter λ (of order λ), the tolerance-asymptotic model
equations were obtained, according to Eqs. (21):

∂1 (< C1111 > ∂1w1+ < C1122 > ∂2w2+ < C1111∂h > v1)

− (< b11 > ∂1ϑ + < b11∂g > ψ)

= −∂2 (< C1221 > ∂1w2+ < C1212 > ∂2w1+ < C1221∂h > v2)+ < ρ > ẅ1

∂1 (< C2121 > ∂1w2+ < C2112 > ∂2w1+ < C2121∂h > v2) + ∂2 (< C2211 > ∂1w1)

= −∂2 (< C2222 > ∂2w2+ < C2211∂h > v1)+ < b22 > ∂2ϑ + < ρ > ẅ2 (21)

− < C1111∂h > ∂1w1 − < C1122∂h > ∂2w2 − < C1111∂h∂h > v1 = 0

− < C2121∂h > ∂1w2 − < C2112∂h > ∂2w1+ < C2121∂h∂h > v2= 0

∂1 (< k11 > ∂1ϑ+ < k11∂g > ψ) + ∂2 (< k22 > ∂2ϑ)− < cρ > ϑ̇

= < T0b11 > ∂1ẇ1 +< T0b22 > ∂2ẇ2 +< T0b11∂h > v̇1

− < k11∂g > ∂1ϑ− < k11∂g∂g > ψ=0
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where the double-underlined terms were responsible for the full connection between
sought unknowns.

The known temperature as external load was assumed on the edges of the lam-
inate according to Eqs (22):

θ|x1=0 = θl, θ|x1=L1
= θr, θ|x2=0 = θt, θ|x2=L2

= θb (22)

The known displacements along x 1 direction following to Eqs. (23):

u1|x1=0 = u1l, u1|x1=L1
= u1r, u1|x2=0 = u1t, u1|x2=L2

= u1b (23)

and the known displacements along x 2 direction following to Eqs. (24):

u2|x1=0 = u2l, u2|x1=L1
= u2r, u2|x2=0 = u2t, u2|x2=L2

= u2b (24)

as boundary conditions were assumed. Then the appropriate boundary conditions
for other unknowns and necessary initial conditions were defined.

To solve Eqs. (20) and (21) the finite difference method was used. Along
direction parallel to the laminas the grid nodes distribution was uniform and along
direction perpendicular to the laminas the nodes were defined in the middle of every
sublayer, between the sublayers and between the cells.

By using the finite difference method in each of presented models the set of non-
homogeneous discretized equations was obtained with the macrodisplacements, the
macrotemperature and the fluctuation amplitudes of the displacements and the
temperature as a unknowns, according to Eq. (25):

(1− α)Kqk+1 + αKqk +Ktq
k+1 + (1− α)Qk+1 + αQk = 0 (25)

where K and Kt was matrix of coefficients respectively independent and dependent
of time coordinate in individual equations, Q was a vector of free terms, q – vector
of unknowns ordered alternately at individual points, k defines specific point in
time and α is a parameter determining the approach in the context of numerical
methods. In this note α is equal to 0.5, because the Crank-Nicolson method was
used.

The obtained results were shown in Figs. 2-10 in the form of plots of dimension-
less values of sought unknowns. The dimensionless values of the macrotemperature
T, the fluctuation amplitudes of the temperature Ψ, the total temperature Θ, the
macrodisplacements W 1, the fluctuation amplitudes of the displacements V 1, the
total displacements U 1, the macrodisplacements W 2, the fluctuation amplitudes of
the displacements V 2 and the total displacements U 2, were obtained by dividing
the received values by the maximum worth of individual unknown in the asymp-
totic model. The plots were made for the specific dimensionless time coordinate
τf = t/1 [s] and the dimensionless spatial coordinates ξ1 = x1L1 and ξ2 = x2/L2.

Then the results obtained by solving the equations of both models were compared
with the results obtained by solving the same equations but after omitting the
double-underlined terms, responsible for the full connection between the tempera-
ture and the displacements.
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(a)                                                                                   (b)

Figure 2 The dimensionless values of the macrotemperature (a) in the asymptotic and (b) in the
tolerance model

(a)                                                                         (b)

Figure 3 The dimensionless values of the fluctuation amplitudes of the temperature (a) in the
asymptotic and (b) in the tolerance model

(a)                                                                                   (b)

Figure 4 The dimensionless values of the total temperature (a) in the asymptotic and (b) in the
tolerance model
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(a)                                                                                   (b)

Figure 5 The dimensionless values of the macrodisplacements along direction x1 (a) in the asymp-
totic and (b) in the tolerance model

(a)                                                                                   (b)

Figure 6 The dimensionless values of the fluctuation amplitudes of the displacements along di-
rection x1 (a) in the asymptotic and (b) in the tolerance model

(a)                                                                                   (b)

Figure 7 The dimensionless values of the total displacements along direction x1 (a) in the asymp-
totic and (b) in the tolerance model
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(a)                                                                                   (b)

Figure 8 The dimensionless values of the macrodisplacements along direction x2 (a) in the asymp-
totic and (b) in the tolerance model

(a)                                                                                   (b)

Figure 9 The dimensionless values of the fluctuation amplitudes of the displacements along di-
rection x2 (a) in the asymptotic and (b) in the tolerance model

(a)                                                                                   (b)

Figure 10 The dimensionless values of the total displacements along direction x2 (a) in the
asymptotic and (b) in the tolerance model
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Figure 11 The relative error of the dimensionless values of the total temperature

Figure 12 The relative error of the dimensionless values of the total displacements along direc-
tion x1



On Thermoelasticity in FGL – Tolerance Averaging Technique 715

The comparison of the results (the relative error between the values of unknowns
while solving the equations including the double-underlined terms and the equations
without these terms) was shown in Figs. 11-13. By line with markers in the form of
dots, pluses and rhombs it was denoted the relative error defined, on the example
of the total temperature, by Eq. (26), Eq. (27) and Eq. (28), respectively.

Θ|T0=0[K] − Θ|T0=273[K]

Θ|T0=0[K]

100% (26)

Θ|T0=0[K] − Θ|T0=2730[K]

Θ|T0=0[K]

100% (27)

Θ|T0=0[K] − Θ|T0=27300[K]

Θ|T0=0[K]

100% (28)

Figure 13 The relative error of the dimensionless values of the total displacements along direc-
tion x2

4. Remarks

Based on the presented considerations and results some remarks can be formulated:

1. by using the tolerance averaging technique it is possible to replace the differen-
tial equations with tolerance-periodic, highly-oscillating and non-continuous
coefficients, by the set of equations where the coefficients are constant or
slowly-varying
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2. by using the tolerance modelling it is possible to analyze the whole structure,
without necessity of analysis the problem in a single cell

3. by using the equations of the tolerance model it is possible to take into account
the effect of the microstructure size in thermolasticity problems, while in the
asymptotic model equations this effect is omitted

4. the influence of the microstructure in this issue can be observed as wedges in
the figures of the total displacements and the total temperature

5. the equations of two presented models can be used in the analysis of some
specific cases, where the distribution of properties is functional, but non-
periodic

6. the maximum values of the macrodisplacements, the macrotemperature, the
total displacements and the total temperature in analysed models are very
similar (in the tolerance-asymptotic model are slightly higher than in the
tolerance model)

7. the relative error of the values of unknowns while solving the equations in-
cluding the terms responsible for the full connection between the displace-
ments and the temperature and the equations without these terms takes values
0÷0.1%, so the impact of these terms is negligibly small.
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