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This text covers optimization of an inverted pendulum control system with friction com-
pensator. The control system is tuned with respect to a performance index based on the
novel method of the Largest Lyapunov Exponent estimation. The detailed description
of the method is provided. Model of the control object is presented. A simple controller
is proposed. Two control systems are compared: the one with compensator and the one
without. Parameters of both controllers are optimized with respect to the novel crite-
rion by means of the Differential Evolution method. Results of numerical simulations
are presented. It is shown that the new criterion can be successfully applied to both:
typical linear regulators and controllers with compensators.
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differential evolution.

1. Introduction

Lyapunov Exponents (LE) are one of the commonly used tools for the analysis of
non-linear dynamical systems. These exponents indicate the exponential conver-
gence or divergence of trajectories that start close to each other. The existence
of such numbers has been proved by Oseledec theorem [1], but the first numerical
study of the system’s behavior using Lyapunov exponents had been done by Henon
and Heiles [2].

Recently, a simple and effective method of estimation of the Largest Lyapunov
Exponent (LLE) from the perturbation vector and its derivative dot product has
been presented. It is based on simple computations involving only basic mathemat-
ical operations such as summing, subtracting, multiplying, dividing. The LLE can
be extracted from information known before each integration step. The method
can be used in different aspects of the nonlinear systems control. The applica-
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tions presented so far include: continuous systems [3], synchronization phenomena
detection [4], time series in control systems [5–7].

In this paper, the control performance index [5] based on the LLE estimation
algorithm [3] is used to optimize a control system with friction compensator. Deriva-
tion of the novel control performance index is presented, its properties are explained.
Features of the new index are checked on an exemplary control system – the in-
verted pendulum. Equations of the control object are presented. Two controllers
are proposed: the linear one with a friction compensator and the one without a
compensator. Optimization of both controllers parameters with respect to the new
criterion is performed by means of the Differential Evolution method [8]. Finally,
results of simulations are presented and conclusions are drawn.

2. Description of the Control Object

The control object analyzed in this paper is an inverted pendulum (Fig. 1). The
inverted pendulum is a kind of pendulum in which the axis of rotation is fixed to
a cart. The cart is able to move along the horizontal axis x in a controlled way.
The fundamental problem of the inverted pendulum is to find such a control of the
cart that keeps the pendulum’s bar in the vicinity of the upright vertical position
α(t) = 0 even if external disturbances appear.

Figure 1 Sketch of the considered control object – the inverted pendulum

It has been assumed that the pendulum’s drive is velocity-controlled. It means
that the control signal u(t) supplied to the drive is equal to the desired velocity of
the cart. If the drive is stiff enough, then the motion of the pendulum’s bar does not
influence position of the cart x(t). Providing that the drive can be approximated by
a linear differential equation of the first order, the dependence between acceleration
of the cart and the control signal is as follows (4):

ẍ(t) = a[u(t)− ẋ(t)] (1)

where u(t) is the control signal and a is a drive constant, which can be determined
in the identification process.

The equation of motion of the inverted pendulum can be easily derived using
Lagrange approach [9]. Assume that the pendulum’s bar is uniform, its mass center
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C is in the middle of its length and it is loaded by a friction torque τ ∗ml2/3. Then,
the following equation of motion (2) is obtained:

α̈(t) =
3g

2l
sin(α(t)) +

3ẍ(t)

2l
cos(α(t))− τ(α̇(t)) (2)

where l is the length of the bar. Substituting the equation (1) into (2) removes
acceleration of the cart from the equation of motion of the bar and indicates direct
influence of the control on acceleration of the bar (3):

α̈(t) =
3g

2l
sin(α(t)) +

3a

2l
(u(t)− ẋ(t)) cos(α(t))− τ(α̇(t)) (3)

Equations (1) and (3) constitute a complete mathematical description of the in-
verted pendulum.

Let the state vector of the system (1), (3) be defined as (4):

x(t) = [x1, x2, x3, x4]T = [α, α̇, x, ẋ]T (4)

In this paper a linear control of the pendulum has been assumed. Therefore, the
control function u(t), in the case without compensator, can be described in the form
(5):

u(t) = [k1, k2, k3, k4]T · x(t) = k · x(t) (5)

where k = [k1, k2, k3, k4]T is the vector of controller parameters and k1, . . . , k4 are
constants to be determined.

The controller with compensator should operate in such a way that the influence
of friction τ on the motion of the bar is removed or, at least, minimized. Consider
a compensated control u∗(t) in the form (6):

u∗(t) = u(t) +
2lτ(α̇(t))

3a cos(α(t))
(6)

Obviously, the friction function value τ in (6) is the one obtained from a model.
Inserting the new control u∗(t) to Eq. (6) in the place of u(t) in (3) leads to the
new equation of motion of the bar with friction compensation (7):

α̈(t) =
3g

2l
sin(α(t)) +

3a

2l
(u(t)− ẋ(t)) cos(α(t)) (7)

The equation (7) states that, as long as the friction model used in (6) is accurate
enough and delays in the system are negligible, application of the compensator (6)
can minimize influence of friction torque on motion of the pendulum’s bar. In this
paper an ideal case is analyzed: the friction model in (6) is assumed to be exact
and no delays are taken into account.

3. Controller Optimization

This section is devoted to optimization of the controllers (5), (6), i.e. selection of
such values of parameters k1, . . . , k4 that minimize value of the performance index
based on the new LLE estimation method [3]. According to [5], the performance
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index is obtained by calculating the mean value λe of coefficients λ∗ (8) calculated
in each integration step.

λ∗ =
dx
dt · x
|x|2

(8)

For fixed initial conditions of the systems (1,3,5) or (1,3,6), λe can be treated as
a function of regulator constants: λe = λe(k1, . . . , k4). Values of this function can
be obtained by numerical simulation of the systems (1,3,5), or (1,3,6) and direct
calculation of λe. Therefore, optimization of the controller can be regarded as min-
imization of the function λe(k1, . . . , k4). This task has been solved by means of
the Differential Evolution (DE) method [8]. DE is a heuristic method which does
not require differentiability or even continuity of the optimized function. There-
fore, it suits very well to the presented task, because properties of the function
λe(k1, . . . , k4) are not known. However, it is not guaranteed that the result of DE
method is strictly the optimal one. Please note that different values of optimal
parameters k1, . . . , k4 may be obtained for the controller with compensation and
for the one without compensation.

Assume that for small angular velocities of the bar, the following cubic friction
model is valid (9):

τ(α̇) = c1α̇+ c2(α̇)3 (9)

Under such conditions, the whole inverted pendulum control system can be de-
scribed in the state space as follows (10):

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4

 =


x2

3g
2l sin(x1) + 3a

2l [u(t)− x4] cos(x1)− c1x2 − c2(x2)3

x4
a[u(t)− x4]

 (10)

where the control u(t) in (10) may be taken either from the formula (5) in the case
of control without compensation, or from the formula (6) in the case of control with
compensation.

The following parameters values have been used for simulations: g = 9.81,
a = 19.72688, c1 = 0.21075, c2 = −0.11161. These numbers have been obtained
from identification of a real inverted pendulum. Please note that c2 < 0. Therefore,
the friction model (9) can be applied in limited range of velocities only. It has been
assumed that the system starts with the following initial conditions: x1(0) = 0.3,
x2(0) = 1.0, x3(0) = x4(0) = 0.0. The boundaries for optimized parameters have
been selected as follows: [2.0, 100.0] for k1, [0.0, 10.0] for k2, [−5.0, 0.0] for k3 and
[−5.0, 0.0] for k4. Such boundaries approximate the region in the parameters space
for which the control system (10) is stable. Integration of the system (10) has been
performed by means of Runge-Kutta method implemented in the SciPy package
for Python programming language. The maximum integration step has been set to
10−3. The implementation of Differential Evolution method provided by the SciPy
package has been applied to find the best parameters k.

Throughout the optimization process, the system (10) has been simulated for
6630 different controller parameter vectors k in the case with compensator and for
6245 different values of k in the case without compensator. In each trial the index
λe has been calculated.



M. Balcerzak 963

The graph depicting changes of the angle α(t) during stabilization of the pen-
dulum with the optimal compensated controller (dashed line) and with the optimal
non-compensated one (solid line) is presented in the Fig. 2. Zoom of the Fig. 2 in
the neighbourhood of the second local maximum of α(t) is shown in the Fig. 3.

Figure 2 Stabilization of the pendulum with two types of controllers: the optimized linear con-
troller with compensator (dashed line) and the optimized linear controller without compensator
(solid line)

Figure 3 Zoom of the Fig. 2 in the neighborhood of the second local maximum
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4. Conclusions

This paper presents application of a new criterion of control performance assess-
ment to optimize a controller with friction compensation. The control performance
index based on the new method of the largest Lyapunov exponent estimation has
been presented. An exemplary control system – the inverted pendulum – has been
described. Equations of the control object have been presented. A simple linear
controller has been proposed. A friction compensator has been introduced. The
controller with compensator and the one without compensator have been optimized
with respect to the new control performance index. The Differential Evolution
method has been applied in the optimization process.

Results show that the performance of the optimized controller is similar for the
case with compensator and for the case without compensator. Application of the
compensated controller results of slightly larger overshoot in the first minimum of
the controlled variable, a bit smaller overshoot in the first maximum and longer re-
gulation time. However, these differences are minor. This results from the fact that
friction in the presented control system is relatively small. Nevertheless, the main
conclusion of this work is that the presented method can be successfully applied to
optimize control systems with compensators.
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