
Mechanics and Mechanical Engineering

Vol. 22, No. 4 (2018) 875–883
c© Lodz University of Technology

Friction Compensation in the Inverted Pendulum Controller by Means
of a Neural Network

Marek Balcerzak

Division of Dynamics, Lodz University of Technology
ul. Stefanowskiego 1/15, 90-924 Lodz, Poland

marek.balcerzak@dokt.p.lodz.pl

Received (1 December 2017)

Revised (6 May 2018)

Accepted (25 June 2018)

This paper presents an experimental confirmation of the novel method of friction mod-
elling and compensation. The method has been applied to an inverted pendulum control
system. The practical procedure of data acquisition and processing has been described.
Training of the neural network friction model has been covered. Application of the ob-
tained model has been presented. The main asset of the presented model is its correctness
in a wide range of relative velocities. Moreover, the model is relatively easy to build.
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1. Introduction

This paper presents a novel approach to friction modelling and compensation. Fric-
tion modelling is an important issue in analysis and simulation of mechanical sys-
tems. High-quality friction models leads to minimization of a discrepancy between
simulations and real behavior of mechanical systems. Different friction models have
been proposed [1]. They differ by complexity and range of applications.

However, a problem arises when friction characteristics differ depending on the
range of velocities. For example, if small velocities are analyzed, the Coulomb
friction may play a crucial role. For bigger velocities, the linear (viscous friction)
or quadratic (air drag) dependences between friction function and relative speed
may appear. Different behaviors are also possible. This is particularly important
in control systems [2] that have to operate in wide range of velocities.

This paper presents a novel approach to friction modelling and compensation.
The obtained friction model has been applied to the inverted pendulum control
system. The data acquisition procedure has been described. Important issues con-
cerning data processing have been depicted: low-pass filtering [3], differentiation by
B-splines [4] fit with continuous derivatives, building the experimentally-obtained
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friction characteristic. A neural network was trained to “remember” the characte-
ristic [5]. In such a manner, a neural friction model has been obtained. A great
asset of this model is its correctness in a wide range of relative velocities.

2. Building the Friction Model

In order to create a successful friction compensator, an accurate friction model has
to be created. In this paper, an artificial neural network (ANN) [5] has been used
for modelling. The purpose of the ANN is to “learn” the friction characteristics. It
has been assumed that the pendulum is a uniform, rigid bar of mass M and length l
and the friction torque depends on the angular velocity of the pendulum only. The
data used to train the neural network has been obtained from free vibrations. A
scheme of free vibrations measurement is presented in the Fig. 1.

Figure 1 Measurement of pendulum’s bar free vibrations

Free vibrations of the pendulum are described by the differential equation (1):

α̈(t) = −3g

2l
sin(α(t)) − 3τ(α̇(t))

Ml2
, (1)

where τ is the friction torque. The equation (1) implies that in order to obtain
the friction characteristics it is necessary to register the pendulum angle, angular
velocity and angular acceleration simultaneously. The data has been obtained by
registration of free vibrations with various initial amplitudes. In order to reduce the
noise that appear due to discretization of the signal from the incremental encoder,
the registered data has been processed by means of the low-pass Butterworth filter
[3]. After filtering, the saved motions α(t) have been interpolated by means of B-
splines [4]. Continuity of the first and the second derivative has been maintained
in the interpolation process. Therefore, derivatives of α(t) can be obtained directly
from interpolated curves. The process of data acquisition is presented in Figs.
2–4. Fig. 2 presents an exemplary registered motion (the dotted line) and the
corresponding data after passing the low-pass filter (the solid line). It can be noticed
that no significant distortions appear due to filtering. Fig. 3 presents derivatives
of the motion obtained from B-splines. Fig. 4 shows the data from the Fig. 3 after
transformation to the (α̇− α̈) plane.
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Figure 2 The recorded motion (grey dotted line) and the data after filtering (black solid line)

Figure 3 Derivatives of the recorded function α(t) – the first derivative in red, the second deriva-
tive in blue

Free vibrations of the pendulum with different initial amplitudes have been
recorded and processed in the same manner. From all the obtained data, a set
of points

(
α̇, 3τ(α̇(t))

/
Ml2

)
satisfying the equation (1) has been received. This

set of points, which represents an experimentally obtained friction characteristic, is
presented in the Fig. 5.

The task of the neural network is to provide a curve that represents the set
presented in the Fig. 5 as closely as possible. Due to specification of particular
application, a neural network with one hidden layer that contains neurons with
sigmoidal activation function and one output layer that includes a neuron with
linear activation function, has been chosen. Then, training of neural networks has



878 Friction Compensation in the Inverted Pendulum Controller by Means . . .

Figure 4 Angular velocity and angular acceleration data after transformation to the (α̇- α̈) plane

Figure 5 The experimentally-obtained friction characteristic

been performed. ANNs with 3, 5, 7, 9 and 10 neurons in the hidden layer have been
tested. During learning, the Levenberg-Marquardt algorithm [5] has been used.
Values of the mean squared fit error for different numbers of neurons in the hidden
layer are presented in the Fig. 6.

The graph from the Fig. 6 shows that although the highest quality of fit is
obtained for 10 neurons in the hidden layer, only 3 neurons in the hidden layer
assure only slightly worse accuracy of the fit. Comparison of fitted curves obtained
from networks with 3 neurons and with 10 neurons is presented in the Fig. 7. It
can be noticed that the curves almost overlap.

In such a way, a neural-network-based friction model has been obtained. Unlike
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Figure 6 The mean squared fit error depending on the number of neurons

Figure 7 The mean squared fit error depending on the number of neurons

simple friction models [1], the presented model is valid for a large range of relative
velocities. However, its complexity is significant.

3. The Friction Compensator

The obtained friction model can be applied as the friction compensator in an in-
verted pendulum control system. The inverted pendulum is a kind of pendulum in
which the axis of rotation is fixed to a cart (Fig. 8). The cart is able to move along
the horizontal axis x in a controlled way. The fundamental problem of the inverted
pendulum is to find such a control of the cart that keeps the pendulum’s bar in
the vicinity of the upright vertical position α(t) = 0 even if external disturbances
appear.

It has been assumed that the pendulum’s drive is velocity-controlled. It means
that the control signal u(t) supplied to the drive is equal to the desired velocity of
the cart. If the drive is stiff enough, then the motion of the pendulum’s bar does not
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Figure 8 Sketch of the considered control object – the inverted pendulum

influence position of the cart x(t). Providing that the drive can be approximated by
a linear differential equation of the first order, the dependence between acceleration
of the cart and the control signal is as follows:

ẍ(t) = a[u(t) − ẋ(t)] , (2)

where u(t) is the control signal and a is a drive constant, which can be determined
in the identification process.

The equation of motion of the inverted pendulum can be easily derived using
Lagrange approach [6]. Assume that the pendulum’s bar is uniform, its mass center
C is in the middle of its length and it is loaded by a friction torque τ . Then, the
following equation of motion (3) is obtained:

α̈(t) =
3g

2l
sin(α(t)) +

3ẍ(t)

2l
cos(α(t)) − 3τ(α̇(t))

Ml2
, (3)

where l is the length of the bar. Equations (2) and (3) constitute a complete
mathematical description of the inverted pendulum. After inserting the equation
(2) into (3), acceleration of the cart is removed from (3) and acceleration of the bar
depends directly on the control signal (4):

α̈(t) =
3g

2l
sin(α(t)) +

3a

2l
[u(t) − ẋ(t)] cos(α(t)) − 3τ(α̇(t))

Ml2
. (4)

Assume that initially the pendulum is governed by a linear LQR controller [2].
Then, the control signal is calculated according to the formula (5):

u(t) = [k1, k2, k3, k4]
T · x(t) = k · x(t) , (5)

where k = [k1, k2, k3, k4]
T

is the vector of controller parameters and k1, . . . , k4
are constants to be determined from the control object linearized model using the
Riccati equation [2]. Let the compensated control u∗(t) be defined according to the
equation (6):

u∗(t) =
3a [ẋ [cos(α) − 1] + u(t)] + 3g [α− sin(α)] + 2τ(α̇)/Ml

3a cos(α)
. (6)
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Obviously, the compensated control (6) can be calculated only if the friction
characteristic τ( ) is known – here the neural model from the previous chapter is
applied. Inserting the control u∗(t) in the place of u(t) in the equation (4) yields
the linear model of an inverted pendulum (7):

α̈(t) =
3g

2l
α(t) +

3a

2l
[u(t) − ẋ(t)] . (7)

Therefore, the control u∗(t) makes the system behave as if the control object was
linear.

4. Numerical Test

The control system defined by the equations (2), (4) has been simulated with both:
standard control (5) and the compensated control (6). The following values of
parameters have been used: a = 19.72688, g = 9.81, l = 1.0. The parameter M
was redundant due to the fact that the friction torque value obtained in modelling
process was already divided by the moment of inertia of the bar. The following
initial conditions were applied: α(0) = 0.3, α̇(0) = 1.0. The parameters of the LQR
controller have been obtained for state weights Q = [2.0, 1.0, 1.0, 1.0] and the input
weight R = [1.0]. The comparison between stabilization of the pendulum with the
compensator and without compensator is depicted in the Fig. 9. Figure 10 presents
a zoom of the Fig. 9.

Figure 9 The comparison between stabilization of the pendulum with the compensator (dashed
line) and without compensator (solid line) – numerical simulation

It can be noticed that application of the friction compensator results in slightly
smaller overshoot in the system. However, the difference is minor. The test has
been repeated on the real inverted pendulum laboratory stand. The recorded graph
of α(t) is presented in the Fig. 11.
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Figure 10 Zoom of Fig. 9

Figure 11 The comparison between stabilization of the pendulum with the compensator (dashed
line) and without compensator (solid line) – test on the laboratory stand

5. Conclusions

The paper presents a novel approach to friction modelling and compensation with
application to the inverted pendulum control system. The data acquisition proce-
dure has been described. Important issues concerning data processing have been
depicted: low-pass filtering, differentiation by B-splines fit with continuous deriva-
tives, building the experimentally-obtained friction characteristic. A neural network
was trained to “remember” the characteristic. In such a manner, a neural friction
model has been obtained. A great asset of this model is its correctness in a wide
range of relative velocities.

The friction model has been applied to compensate friction of an inverted pen-
dulum system. The control system with compensator works properly. However,
due to relatively small values of friction in the system, improvement in operation
is minor. Nevertheless, such approach may be very useful for systems in which the
friction plays crucial role.
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