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Abstract: Problems involving vibrations (mechanical or
electrical) can be reduced to problems of coupled oscil-
lators. For this, we consider the motion of coupled oscilla-
tors system using Lagrangian method. The Lagrangian of
the system was initially constructed, and then the Euler-
Lagrange equations (i.e., equations of motion of the system)
have been obtained. The obtained equations of motion are a
homogenous second-order equation. These equations were
solved numerically using the ode45 code, which is based
on Runge-Kutta method.
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1 Introduction

In classical mechanics, there are many useful techniques
that can be used in solving physical systems. Newtonian
mechanics is a technique based on vector concepts (i.e.,
forces). In this technique, one has to write down all forces
acting on the system, and then, applying Newton’s second
law. Another useful technique based on scalars quantities
(i.e., kinetic and potential energies) has been developed.
This technique, known as Lagrangian mechanics, helped
physicists in solving a large number of complicated systems,
where Newtonian techniques cannot be applied effectively
in many areas in physics, such as classical mechanics [1, 2],
nonlinear systems, and control theory [3, 4].
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To apply Lagrangian mechanics, one has to write down
the kinetic and potential energies of the system, and as a
result, the Lagrangian L(q, g, t) is obtained, where g rep-
resents the generalized coordinate, ¢ is the generalized
velocity, and ¢ is the time. Applying the following equation
g—fl - %g—é = 0 to the Lagrangian L(q, g, t), we obtained
a set of differential equations known as Euler-Lagrange
equations (ELE) or equations of motion. For more details,
one can refer to [1]. The ELE can be solved analytically, and
thus, the motion of the system is specified. In many cases,
the ELE cannot be solved analytically. Therefore, we have
to seek for suitable numerical techniques to apply, and in
this case, some initial conditions are needed.

On the other hand, it is important to remember that all
mechanical and electrical vibration problems reduce, in
the case of small oscillations, to problems involving one or
several coupled oscillators. Problems involving vibrations
of strings, membranes, elastic solids, electrical, or acousti-
cal can be reduced to problems of coupled oscillators; see
for examples [5, 6] and references within them.

Many numerical methods have been introduced in liter-
ature to solve differential equations [7-12]. These numerical
methods are based on MATLAB, MATHEMATICA, MATCAD
software and other computerized programs. For example,
MATLAB contains many built-in codes that can be used in
such cases (e.g., ode45). These numerical techniques enable
us to solve many systems numerically, even when the ana-
lytical solution is not known. In addition, the ode45 code
depends on a Runge-Kutta method, which can be used effi-
ciently in solving different kinds of differential equations.
One can refer to [13, 14] and references therein to construct
a good idea about applying the Runge-Kutta method on
solving differential equations.

On the other hand, many ideas have been carried out
by applying MATLAB and built-in codes in solving some
differential equations. For example in [15-17], the authors
solved some differential equations describing physical sys-
tems by applying Lagrangian mechanics and obtaining the
ELEs, which are in general differential equations that need
to be solved numerically for certain initial conditions.

The outline of this paper is arranged as follows: In Sec-
tion 2, the physical description of the system is presented,
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and the Lagrangain of the coupled oscillator is obtained. In
Section 3, the numerical method used is presented. Section
4 provides the numerical solutions of the derived equations
of motion for different initial conditions. The results were

discussed in Section 5. We finally end the paper with con-

clusions.

2 Physical description of the
coupled oscillator

Let us consider the system shown in Figure 1, which consists
of two coupled carts of masses m; and m,, attached to
their respective walls by two identical springs (with force
constant k) and to each other by another spring (with force
constant k») [1]. It is of interest to mention that in some
books, this system is known as: diatomic molecules.
Assuming all springs to be massless, we aim to obtain

the ELE for the system, and then we require obtaining a nu-

merical solution for these equations under different initial
conditions.
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Figure 1: Two coupled carts with two different masses

First of all, the kinetic energy (T) of the system reads:

1. 1 .

T= SMixq + 5maX). 6]
In order to write the potential energy (V) of the system, we
have to identify the extensions of the three springs shown
in Figure 1 as (x1,x1 —x», and —x»). As a result, the potential
energy reads:

V= % (k+ kz)x% —kyx1xy + %(kz +k) x3. 2

The classical Lagrangian can be immediately written
as:

L=T-V-= %ml)’(% . %mz)'(% —%(k+k2)x% 3)

+koxi1xo — % (ky + k) x3.

Our final step in this section is in obtaining the equations
of motion. As such, applying our Lagrangian (eq. 3) to the

following equation g—fl -4 a—g = 0, with g = x1, X2, we got
the following ELE:
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For q = x1, we have:
myXy = - (k+ky)x1 + kaxa. (4)
While for g = x,, we have:
myX, = kax1 — (ko + k) x3. )

Now, we aim to obtain the Hamilton’s equations of motion.
The first point is introducing the following generalized mo-
menta:

bx, = aTl = mxy. (6)
oL .
DPx, = % - mx;. 7)

As aresult, the Hamiltonian H = >~ g;px;, — L, withI =1, 2
reads:

2
s Po 1

2
— pX1 = 2 _
2m1 Zml 2 (k + kz)xl kZXIXZ (8)

+ % (ks + k) x3.

Finally, the Hamilton’s equations can be obtained as:

X1 = aiH = miX; = — (k+ k) x1 + kax3. )
0Py,

)'(2 = oH = mzkz = k2X1 - (k2 + k)XZ- (10)
a.PXZ

In the section below, we aimed to obtain numerical solution
for egs. (9, 10) for some initial conditions.

3 Numerical solution method

A standard solver for ordinary differential equations (ODEs)
in the simulation of MATLAB’s framework is the ode45 func-
tion. ODE45 executes the Runge-Kutta method with a vari-
able time step for optimal computation [18-20]. A fourth-
order Runge-Kutta algorithm is useful in solving non-linear
differential equations, taking into consideration some given
initial conditions [21]. Any problem in the following manner
dx

— = f(t, x).

dt ()

With x(to) = xo

Where ¢ is the independent variable, x is a vector of
dependent variables to be found, and f(t, x) is a function
of t, and x can be solved using ode45. Specifying f(t, x) and
the initial conditions enable us to solve the problem [22].
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Bellow a short explanation is presented to explain how
Runge-Kutta works [23].
In general, given that:

Y =f, ). 12)
)/(Xn) =¥n. (13)
Then, one can compute in turn:

k1 = hf (xn, yn). (14)

h k
ko = hf (xn + f’y" + 21> . (15)

h k
k3=hf<xn+§,yn+72>. (16)
k4 = hf (xn + h, yn + k3). (17)

1

Yne1 =Yn+ & (ky +2ky +2k3 + ky) . (18)

Now, everything becomes in first-order form, so the list of
commands is needed in the code [24].

ODE45 is used to implement “first try” solution for most
problems [25, 26]. For more details about the Runge-Kutta
method, one can refer to [23, 27].

Repetition and conditional structures are used to re-
peat sequences in MATLAB, and from these structures are:
if and if-else statements, do while, for each, while, and for
loops.

In literature, there are many examples of repetition and
conditional structures [23, 27].

In Section 4, we propose the numerical solution for
egs. (4 and 5) using loop structure. We consider some initial
conditions, and the numerical solution for these particular
conditions has been obtained.

4 Simulation results

Below, we consider some selected cases to obtain the nu-
merical solution of egs. (4, 5):

Case 1: Symmetric Case

In this case, we considered the two initial conditions
x1(0) = —x,(0) = 1 andx;(0) = —x,(0) = 0.5; on the other
hand, the other parameters were assumed to be k = 1, 2,
with k, = 2k, while m; = 3 and m, = 7, see Figures 2, 3:
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3 X1 and X2 vs. time at the constant K=1
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Figure 2: The positions x; and x, of masses m; and m,, respec-

tively, against time ¢ (the red line for mass my, and the black line for
mass my).
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Figure 3: The positions x; and x, of masses m; and m;, respec-
tively, against time ¢ (the red line for mass m; and the black line for
mass m,).

Case 2: Anti-symmetric Case

In this case, we considered the following two initial con-
ditions x1(0) = x2(0) = 1 and x1(0) = x,(0) = 0.5, and the
other parameters were assumed to be k = 1, and 2, with
k, = 2k, while m; = 3 and m, = 7, see Figures 4, 5:

) X1 and X2 vs. time at the constant K=1
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Figure 4: The positions x; and x, of masses m; and m,, respec-
tively, against time ¢ (the red line for mass m; and the black line for
mass my).
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15 X1 and X2 vs. time at the constant K=2
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Figure 5: The positions x; and x, of masses my, and m,, respec-
tively, against time ¢ (the red line for mass m; and the black line for
mass m,).

Case 3: Weak Coupled Oscillator (k; << k)

Finally, we considered the weak coupled oscillator case,
which is of special importance. In this case, the following
parameters are considered k = 1, and 2, with k, = 0.01,
while m; = 3 and m, = 7, with the following two initial
conditions x1(0) = 1, x,(0) = 0 and x1(0) = x,(0) = 0, see
Figures 6, 7:
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Figure 6: The positions and x, of masses mj, and m;, respectively
against time ¢ (the red line for mass my, and the black line for mass
mz).
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Figure 7: The positions x; and x, of masses m; and m;, respec-
tively against time ¢ (the red line for mass m; and the black line for
mass my).
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5 Results and Discussion

In this paper, the motion of the coupled oscillator system
has been studied numerically using the ode45 code, and the
solutions x (t) and x(t) have been plotted for the several
considered cases as in Figures 2-7.

Figures 2, 3 present the positions x1(t) and x;(t) of
masses m; and m; against the time, respectively, for the
symmetric case. The results in the same figures show that
the periodicity of the oscillations has disappeared. Also, the
influence on mass m, is clearer than that on m1, because it
has alarger value. In addition, because m; and m, were dis-
placed initially in opposite directions (i.e., x1(0) = —x;(0))
and then released, this is the main reason for disappearing
the periodicity of the oscillations.

Figures 4, 5 present the positions x;(t) and x,(t) of
masses 1 and 2 against the time, respectively, for the anti-
symmetric case. Again, the periodicity of the oscillation has
disappeared, but less than that in Figures 2, 3. The reason
here refers to the fact that the two masses m; and m, were
displaced initially in the same direction (i.e., x1(0) = x>(0))
and then released.

For Cases 1 and 2, it is expected that the periodicity of
the oscillations will be destroyed. This is due to the fact
that the spring-connected the two masses together have a
larger stiffness than the two other springs.

In Figures 6, 7, the positions x; (t) and x,(t) of masses
1and 2, respectively, is displaced against time for the weak
coupled oscillator, where the stiffness of the spring con-
necting the two masses is very small compared with the
other springs stiffness. In our case, we consider k, = 0.01,
whereas k = 1 is shown in Figure 6, and k = 2 is shown
in Figure 7. It is clear from these two figures that mass m;
undergoes a simple harmonic oscillations, with a constant
amplitude and a constant period, while mass m, nearly
vibrates but with very small oscillations around the equi-
librium position; this is due to the fact that m, has a larger
value than m;.

Finally, one can see from the figures that if the stiff-
ness of the spring connecting the two masses is larger than
the other springs’ stiffness, then this will not allow the sys-
tem to undergo simple harmonic motion. As a result, the
periodicity of the motion is destroyed.

6 Conclusion

In conclusion, the periodicity of the oscillator disap-
peared, especially in the symmetric case. While in the anti-
symmetric case, the periodicity is nearly still there and not
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destroyed. In the weak coupled case, one can see from Fig-
ures 6, 7 that mass m, does not move, because it is larger
than m;.

After releasing the system, the displacement in the sym-
metric and anti-symmetric cases exceeds the initial dis-
placement. This can be explained by the effects of springs
on each other. Nonetheless, for the weak coupled oscilla-
tor, mass m; undergoes a simple harmonic motion and not
affected by mass m.
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