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Abstract: Non-circular gears can be used in modern ma-
chines and mechanisms for the implementation of various
types of motion and have high strength and compactness
compared to linkage mechanisms. This article presents the
force analysis of non-circular gear on the example of the
planetarymechanismwith elliptical gears, providing the ro-
tationally reciprocatingmotion of the impeller of the stirred
tank. Based on the calculation schemes of the links, kine-
tostatic balance equations for each link of the mechanism
are compiled and solved. Reaction forces in kinematic pairs
and balancing moment on the input shaft of the mecha-
nismare found. The results can be used in the synthesis and
analysis of various machines with the proposed kinematic
scheme of the mechanism.

Keywords: Planetary gear, elliptical gears, rotationally re-
ciprocating motion, kinetostatic analysis

1 Introduction
Transmissions by non-circular gears have been known for
a long time and are of great interest to scientists and en-
gineers [1, 2]. The first schemes of mechanisms with non-
circular wheels were found in the works of Leonardo da
Vinci, and some of the first models of such devices were
made in the 19th century by the German scientist Ferdi-
nand Redtenbacher. Widespread research and dissemina-
tionof these gears has longbeenhinderedby the lack of sim-
ple and accurate manufacturing methods for non-circular
gears.

Currently, there are a large number of papers devoted
to geometric and kinematic analysis, design and practi-
cal application of gears by non-circular gears [3–9]. For
example, there are proposed: chain drives with variable
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ratio for bicycles [3]; a mechanical device containing a Mal-
tese cross mechanism and a gearing to achieve intermit-
tent motion [4]; the gear trains used for velocity variation
and function generation [5]; constructions of non-circular
gears as a part of rotor hydraulic machines [6] and high-
performance pumps [7]; a knee motion assist device for
biomechatronic exoskeleton having grooved cams and non-
circularwheels [8]; single planetary non-circular gearswith
one internal andone external gear for bicycleswithhigh effi-
ciency [9]. It was shown in [10–14] that planetary gears with
non-circular wheels allow to change the sign of the transfer
function and, therefore, provide different types of motion,
for example, intermittent motion [10–12] or rotationally re-
ciprocating motion [13, 14]. The proposed mechanisms are
more compact and durable compared to linkages, and the
improvement of high-precision equipment for machining
and additive production stimulates the development of this
issue of the mechanism and machine theory.

Non-circular gears can have various shapes, but ellipti-
cal gears are themost researched andwidespread at themo-
ment [15–17]. A large number of mechanisms and devices
based on elliptical gears have been developed, their geome-
try and kinematics have been investigated [18–20], and var-
ious problems of their manufacture have been solved [21–
23].

However, most of the papers on the creation of non-
circular gears are devoted only to the geometry and kine-
matics of these mechanisms, while the issues of their dy-
namics are much more complex and have not been studied.
Nevertheless, some applied problems of the dynamics of
non-circular gears have been solved. For example, Xing Liu
et al. [24] carried out a theoretical and experimental study of
the dynamic performance of elliptical gears with rotational
axes at the focus and center of the pitch ellipse. Nan Gao et
al. [17] investigated parametric vibrations and instabilities
of elliptical gears caused by loading torque and eccentric-
ity vibrations. Zhiqin Cai and Chao Lin [25] presented and
investigated a generalized nonlinear dynamic model of a
curved gear drive based on Lagrange-Bondon graphs. Many
researchers consider the issues of dynamics in relation to
practical applications of mechanical devices [24–26] con-
taining non-circular gears, since dynamic models include
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the parameters of technological load on the working body
of the machine.

The purpose of this article is the kinetostatic analysis
of a planetary mechanism with two external gears operat-
ing as part of a drive of a rotationally reciprocating stirred
tank. The idea of imparting various non-stationary types of
motion, including rotationally reciprocating motion, to the
impeller of the stirred tank has been supported by many re-
searchers around the world [27–29]. Despite the increasing
complexity of the drive constructions, the prospects of this
research area are due to a significant increase in the mixing
efficiency, which has been experimentally confirmed using
various practical examples [30, 31].

2 Formulation of the problem
The object of this research is the actuator of the stirred tank
(Figure 1a), in which the rotational motion of the motor
shaft is converted into the reciprocating motion of the im-
peller due to a planetary mechanism with elliptical gears
(Figure 1b).

(a)

(b)

Figure 1: Rotationally reciprocating stirred tank: a – scheme of the
actuator; b – structural scheme of the planetary mechanism

The proposed mechanism (Figure 1b) consists of rack
0, three-vertex links 1, 2, 3, two-vertex link 4, 1-DOF kine-
matic pairs A, C, D, G and 2-DOF kinematic pairs B, E, F.
The structural analysis carried out in [13] showed that the
mechanism exists in a three-moving space (translational
displacements along the x and y axes and rotation around
the z axis), which is traditionally called “planar.” In the
study of kinetostatics, we assume that all the kinematic
pairs lie in the same plane. Figure 2 presents the calcula-
tion scheme of themechanism. The angles of rotation of the
input shaft together with the carrier and the output shaft
are designated as φ1 and φ3, respectively.

Figure 2: Calculation scheme of the mechanism

The study of kinetostatics was carried out for the actu-
ator of the stirred tank, operating in the following mode:
the frequency of the rotationally reciprocating motion f =
10 Hz, the swing angle of the impeller α = 150∘. For this
mode, the following calculation data are considered known
from [13, 14, 32]: active forces, moments of forces, masses
and moments of inertia of links, as well as kinematic pa-
rameters (positions, velocities and accelerations). It is also
assumed that the friction forces in the kinematic pairs are
equal to zero.

3 Force analysis of the mechanism
Conducting a force analysis and determining reactions in
kinematic pairs consists of writing and solving kinetostatic
equations. In the proposed mechanism, for each link, it
is necessary to compose 3 equations, in total 12 equations.
The number of unknown reactions is also 12: 1 reaction in
the kinematic pairsB,E, F and 2 components of the reaction
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in the kinematic pairs A, C, D, G, and also the balancing
momentMb.

Force analysis is carried out sequentially for each link,
beginnign with conducting a force analysis from link 4,
since when it is released from bonds, the smallest number
of unknown reactions is formed. In accordance with the
d’Alembert principle, the acting forces and moments, as
well as the forces andmoments of force inertia were applied
to link 4 (Figure 3).

Figure 3: Calculation scheme of link 4

Link 4makes plane-parallel motion, the instantaneous
center of velocity, of which is the point on the sun wheel,
opposite point B. Dynamic analysis showed [14, 32] that the
angular velocity of the input link 1 is not a constant value
due to the changes in the load on the impeller. However,
whenusing the flywheel, the speed fluctuations are insignif-
icant and do not have much effect on the forces acting on
the links of the machine. Therefore, for the convenience of
calculations, we assume that ω1 = const, ω2 = const and
ω4 = const.

Link 4 is affected by: a reaction R⃗41 in kinematic pair
D, the direction of which is not known in advance; reaction
R⃗43 in the kinematic pair E, which is directed at an angle
α to the tangent O1O2; as well as inertial forces, which are
applied to the center of mass of the link. Gravity forces are
directed perpendicular to the plane of the figure, therefore,
they are not projected on the x and y axes.

The lines O1O2, O3O4 (Figure 3(5)) make an angle 𝛾

with the axis Ox2. Since O3O4 is a tangent to the ellipse at
the point F, to determine the angle 𝛾, the equation of the
tangent in the plane Ox2y2 is written as [33, 34]:

x0 · x
a2 + y0 · yb2 = 1 (1)

where x0 = FG · sin (φ1 − φ3), y0 = FG · cos (φ1 − φ3)−OG
are the coordinates of the point F in the plane Ox2y2, a and
b are the semiaxes of the ellipse,OG = c is the focal distance
of the ellipse.

Transforming equation (1), we obtain an expression for
finding 𝛾:

𝛾 = arctg
(︂
− x0y0

· b
2

a2

)︂
.

To determine the inertia forces, link 4 is considered as
the sum of two bodies: body 4.1 (counterweight and satel-
lite shaft), whose inertia force F⃗in41 is applied to point D,
and body 4.2 (elliptical wheel), whose inertia force F⃗in42 is
applied to point D1.

The accelerations of points D and D1 are defined as
follows. Since ε1 = 0, then aD = anD = ω2

1 · AD. Taking
point D as a pole, we obtain a⃗D1 = a⃗D + a⃗D1D, where aD1D =
anD1D = ω2

2 · D1D is the acceleration of point D1 relative to
pole D.

The required forces of inertia F⃗in41 and F⃗in42 are deter-
mined as:

F⃗in41 = m41 · a⃗D ,

F⃗in42 = m42 · a⃗D1 = m42 · a⃗D + m42 · a⃗D1D .

The notations F⃗1 = m42 · a⃗D, F⃗2 = m42 · a⃗D1D is intro-
duced (Figure 3) and the equilibrium condition is written
in the form of a system of three equations – the sum of the
projections of all the forces on the x and y axis, and the sum
of the moments relative to the point D:

Rx41 − (Fin41 + F1) · sinφ1 − F2 · sin (2φ1) (2)
+ R43 · cos (𝛾 + α − φ3) = 0;

Ry41 − (Fin41 + F1) · cosφ1 − F2 · cos (2φ1) (3)
− R43 · sin (𝛾 + α − φ3) = 0;

F1 sin
(︁π
2 − φ1

)︁
· DD1 · cos

(︁π
2 − 2φ1

)︁
(4)

+ F1 cos
(︁π
2 − φ1

)︁
· DD1 · sin

(︁π
2 − 2φ1

)︁
− Rx43 · DE · cos(π + φ1)
− Ry43 · DE · sin(π + φ1) = 0.

Considering that Rx43 = R43 ·cos (𝛾 + α − φ3) and Ry43 =
R43 · sin (𝛾 + α − φ3), from (4), the reaction R43 is deter-
mined. Then, from equations (2) and (3), we find the reac-
tions Rx41 and R

y
41.

Figure 4 shows the kinetostatic equilibrium of link 3.
The link makes a rotationally reciprocating motion and
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is affected by: reaction R⃗30 in the kinematic pair G, the
direction of which is not known in advance; reactions R⃗32
and R⃗34 in kinematic pairs F and E directed at an angle α to
the tangents O3O4 and O1O2; normal F⃗nin3 and tangential
F⃗τin3 inertia forces applied to the centers ofmass of elliptical
gears; moment of resistance of the stirred liquid M⃗r and
moment of inertia forces M⃗in3.

Figure 4: Calculation scheme of link 3

The kinetostatic balance condition is represented as a
system of three equations – the sum of the projections of
the all the forces on the x and y axis, and the sum of the
moments relative to the point G:

Rx30 + R32 · cos (𝛾 + α − φ3) − R34 · cos (𝛾 + α − φ3) (5)
= 0;

Ry30 − R32 · sin (𝛾 + α − φ3) + R34 · sin (𝛾 + α − φ3) (6)
= 0;

Mr −Min3 − 2Fτin3 · c − Rx32 · FG · cosφ1 (7)
− Ry32 · FG · sinφ1 − Rx34 · EG · cosφ1

− Ry34 · EG · sinφ1 = 0.

Considering that Rx32 = R32 · cos(𝛾 + α − φ3), Ry32 =
R32 · sin(𝛾 + α − φ3), Rx34 = R34 · cos(𝛾 + α − φ3), Ry34 =
R34 · sin(𝛾 + α − φ3), from equation (7), the reaction R32 is
determined. Then, from equations (5) and (6), we find the
reactions Rx30 and R

y
30.

Figure 5 presents the kinetostatic equilibrium of link
2, which performs the plane-parallel motion, the instan-
taneous center of velocity of which is point B. The link is

affected by: a reaction R⃗21 in kinematic pair C, the direc-
tion of which is not known in advance; reaction R⃗23 in
kinematic pair F, which is directed opposite to the found
reaction R⃗32; reaction R⃗20 in kinematic pair B, which is di-
rected at an angle α to the tangent O5O6; as well as inertia
forces, which are applied to the center of mass of the link.
For the convenience of solving the problem, as in the case
of link 4, we consider link 2 as the sum of two bodies: body
2.1 (cylindrical wheel and satellite shaft), the inertia force
F⃗in21 of which is applied to point C, and body 2.2 (elliptical
wheel), the inertia force F⃗in22 of which is attached to the
point C1.

Figure 5: Calculation scheme of link 2

The accelerations of points C and C1 are defined as
follows. Since ε1 = 0, then aC = anC = ω2

1 ·AC. Taking point
C as a pole, we obtain a⃗C1 = a⃗C + a⃗C1, where aC1 = anC1 =
ω2
2 · C1 is the acceleration of point C1 relative to pole C.
The required forces of inertia F⃗in21 and F⃗in22 are deter-

mined as:

F⃗in21 = m21 · a⃗C ,

F⃗in22 = m22 · a⃗C1 = m22 · a⃗C + m22 · a⃗C1.

The notations F⃗3 = m22 · a⃗C, F⃗4 = m22 · a⃗C1 are intro-
duced (Figure 5) and the equilibrium condition is written
in the form of a system of three equations – the sum of the
projections of all the forces on the x and y axis, and the sum
of the moments relative to the point C:

Rx21 + (Fin21 + F3) sinφ1 + F4 sin(2φ1) (8)
− R23 cos (𝛾 + α − φ3) + R20 cos (α − φ1) = 0;

Ry21 + (Fin21 + F3) cosφ1 + F4 cos(2φ1) (9)
+ R23 sin (𝛾 + α − φ3) − R20 sin (α − φ1) = 0;



Force analysis of the two-satellite planetary mechanism with elliptical gears | 5

F3 sin
(︁π
2 − φ1

)︁
CC1 cos

(︁π
2 − 2φ1

)︁
(10)

+F3 cos
(︁π
2 − φ1

)︁
CC1 sin

(︁π
2 − 2φ1

)︁
−Rx23CF · cos(π + φ1) − Ry23CF sin(π + φ1)
+Rx20BC cos(π + φ1) + Ry20BC sin(π + φ1) = 0.

Considering that Rx23 = R23 · cos(𝛾 + α − φ3), Ry23 =
R23 · sin(𝛾 + α − φ3), Rx20 = R20 · cos(α − φ1), Ry20 = R20 ·
sin(α−φ1), from (10), the reaction R20 is determined. Then,
from equations (8) and (9), we find the reactions Rx21 and
Ry21.

Figure 6 shows the kinetostatic equilibrium of link 1,
which performs a rotational motion. The link is affected
by: a reaction R⃗10 in kinematic pair A, the direction and
module of which are unknown; a reaction R⃗12 in kinematic
pair C, which is directed opposite to the found reaction R⃗21;
reaction R⃗14 in kinematic pairD, which is directed opposite
to the found reaction R⃗41; balancing moment M⃗b.

Figure 6: Calculation scheme of link 1

The kinetostatic balance condition is represented as a
system of three equations – the sum of the projections of all
the forces on the x and y axis, and the sum of the moments
relative to the point A:

Rx10 − Rx12 − Rx14 = 0; (11)

Ry10 − R
y
12 − R

y
14 = 0; (12)

−My + Rx12 · AC · cosφ1 − Ry12 · AC · sinφ1 (13)
− Rx14 · AD · cosφ1 + Ry14 · AD · sinφ1 = 0.

Theunknownvalues M⃗b, R⃗x10, R⃗
y
10 are found fromequa-

tions (11) to (13).

4 Results
Mathematical modeling of kinetostatics is carried out for
the rotationally reciprocating stirred tank with planetary
actuator, developed on the basis of the Ika Magic Plant
laboratory scale process plant (Figure 7). The developed
experimental setup contains an electric motor 1, a motor
control unit 2, a rack 3, on which the motor is fixed, a plan-
etary actuator 4, an input shaft of an actuator 5, an output

Figure 7: Ika Magic Plant laboratory scale process plant with rota-
tionally reciprocating actuator

Figure 8: Design of planetary mechanism with elliptical gears
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Figure 9: Graphs of reaction forces Ri(φ1) and balance moment Mb(φ1) in kinematic pairs

shaft of an actuator 6, a coupling 7, a reactor 8, a rack 9,
which holds the reactor with the actuator, reactor cover
10, sealing clamp 11, impeller seal 12, impeller 13, product
loading fitting 14, outlet valve 15, coolant supply fittings 16.

According to the structural scheme in Figure 1b, a plan-
etary actuator is designed and manufactured (Figure 8).
The design of the mechanism consists of the rack 1, an in-
put shaft 2, a carrier 3, an output shaft 4, a sun wheel 5,
elliptical gears 6 and 7 on the output shaft, located at an
angle of 180∘, a first satellite consisting of a cylindrical gear
8, an elliptical gear 9 and a shaft 10, a second satellite con-
sisting of a counterweight 11, an elliptical wheel 12 and a
shaft 13.

The links of the mechanism have the following iner-
tial characteristics (the numbers of the links correspond to
Figure 8): Im = 100 g·cm2 (motor); I2 = 9.8 g·cm2; I3 = 1233
g·cm2; I4 = 30.4 g·cm2; I6 = I7 = 627 g·cm2; I8 = 400 g·cm2,
m8 = 0.1 kg; I9 = I12 = 564 g·cm2, m9 = m12 = 0.09 kg; I10
= 19.2 g·cm2, m10 = 0.04 kg; I11 = 350 g·cm2, m11 = 0.09
kg; I13 = 25 g·cm2, m13 = 0.05 kg; Iim = 15 g·cm2 (impeller).
By correlating the design of the mechanism (Figure 8) and
the calculation schemes in Figures 3 to 6, we obtain the
following masses and moments of inertia of the links for

substitution in the kinetostatic equations (2) to (13): I1 =
Im + I2 + I3 = 1342.8 g·cm2; I3 = I4 + I6 + I7 + Iim = 1299.4
g·cm2;m2.1 =m8 +m10 = 0.14 kg;m2.2 =m9 = 0.09 kg;m4.1
= m11 + m13 = 0.14; m4.2 = m12 = 0.09 kg.

A set of replaceable elliptical gears with eccentricities
from 0.28 to 0.6 is manufactured for the planetary mecha-
nism. Kinematic analysis of the mechanism is carried out
in [14] by constructing plans of the link velocities for vari-
ous eccentricities of elliptical gears, while the largest angle
of rotation of the output shaft 147∘ is obtained at e=0.6. The
maximum angular speed of the motor shaft is 62.8 rad/s
(n = 600 rpm), which allows to obtain the frequency up to
10 Hz of the rotationally reciprocating motion of impeller.
Since the loads on the links of the mechanism increase
with an increase in the frequency and angle of oscillation
of the impeller, the kinetostatic analysis is carried out for
the most loaded mode α = 150∘, f = 10 Hz.

Studies of fluid dynamics in a reactor with a rotation-
ally reciprocating motion of the impeller were carried out
by various authors [35–37], equations for determining the
Reynolds number and the moment of resistance on the
working body were obtained. At the same time, researchers
agree that in the case of laminar fluid motion, the moment
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of resistance is proportional to the angular velocity of the
impeller, and in turbulent motion, it is proportional to the
square of the angular velocity. In the selected operating
mode of the stirred tank, a turbulent mode of fluid move-
ment is observed, therefore, according to [37], the following
equation is applied to determine the moment of resistance
Mr on the impeller:

Mr = B · ω2
im · sign(ωim) (14)

where B is the coefficient of resistance square law, ωim is
the angular velocity of the impeller. According to the results
of calculations for the selected mode, B = 2.67 · 10−6 is
obtained and used in further calculations.

After substituting the initial data and solving equa-
tions (2) to (13), the reactions in kinematic pairs is deter-
mined (Figure 9). Studies have shown that the most loaded
are gears (kinematic pairs) B and F, and the rotational pair
G.

Figure 9 presents graphs of the following reaction
forces in kinematic pairs:

– functions of forces Rx41(φ1), Ry41(φ1) in kinematic
pair D and force R43(φ1) in kinematic pair E are
shown in Figure 9a;

– functions of forces Rx30(φ1), Ry30(φ1) in kinematic
pair G and force R32(φ1) in kinematic pair F are
shown in Figure 9b;

– functions of forces Rx21(φ1), Ry21(φ1) in kinematic
pair C and force R20(φ1) in kinematic pair B are
shown in Figure 9c;

– functions of forces Rx10(φ1), Ry10(φ1) in kinematic
pair A and balance moment Mb(φ1) are shown in
Figure 9d.

As it can be seen from the graphs in Figure 9, the max-
imum values of the forces in the kinematic pairs and the
balancing moment are observed during a change in the
direction of rotation of the impeller (link 3). Moreover, in
most cases, there is a change in the direction of the force
and moment vector.

5 Conclusions
So, in this work, there are obtained systems of equations
that allow to perform force analysis of the planetary actu-
ator with elliptical gears and determine the reactions in
kinematic pairs, as well as the balancing moment for all
the positions of the mechanism. As an example, the cal-
culations of the rotationally reciprocating stirred tank are
carried out and the force graphs in kinematic pairs are pre-
sented, depending on the position of the mechanism, for

the mode f = 10 Hz, α = 150∘. The proposed methodol-
ogy of force analysis can be implemented for other oper-
ating modes of the actuator, which allows for extensive
studies of kinetostatics, to choose the most rational modes
of operation of the stirred tank, as well as to simplify the
calculation and design of the futuremachine. Also, the con-
ducted studies can be applied in the design and analysis of
other devices with the proposed scheme of the planetary
mechanism.
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