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Abstract: The subject of the research is the analysis of
the impact of damping value on the dynamic response of
plate. The work presents the areas of dynamic stability
and instability for the different damping values and com-
pared with the plate without damping. Furthermore, the
nature of solution for each analyzed case was presented.
Research by using the dynamic tools such as phase por-
traits, Poincaré maps, FFT analysis, the largest Lyapunov
exponents were performed. The compatibility of the se-
lected method of stability analysis with the Volmir crite-
rion was also presented.
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1 Introduction
Research of plates regarding their dynamic stability began
in the mid-twentieth century. The first publication about
the dynamic stability of plates was Zizicas’ work, which
was presented in 1952[1]. In this paper, the theoretical so-
lutions for the joint supportedplatewith a time-dependent
load were reported. As a result of subsequent tests, crite-
ria on the basis of which it was possible to assess dynamic
stability were established. The criteria were divided into:
geometric [2], energy [3] and failure [4].

An important criterion was a Budiansky-Hutchinson
criterion [5], which concerned the rods and cylindrical
shells with an axial load. According to their criterion, the
loss of stability of dynamically loaded constructions oc-
curs when the small load increments causes the rapid in-
crease of deflection. A similar criterion was formulated for

*Corresponding Author: L. Borkowski: Lodz University of Tech-
nology, Department of Strength of Materials, Stefanowskiego 1/15
Lodz, 90-924, Poland; Email: lukasz.borkowski@p.lodz.pl

cylindrical shells transversely loaded by Budiansky and
Roth [6].

Another important criterion in the work of Petry and
Fahlbusch was presented [4]. According to the proposed
criterion, the dynamic response of the structure to the
pulse load is dynamically stable if the reduced stress is
smaller or equal to the ultimate stress at any time and at
any point of the structure.

In 1972, Volmir proposed a criterion [7] in which
the problem of dynamic stability was solved using the
Bubnov-Galerkin [8] method and the resulting equations
using the Runge-Kutta [9][10] method. According to the
Volmir criterion, the loss of stability for the pulse load
plates occurs when the maximum deflection of the plates
are equal to a certain constant value – a critical value of
deflection equal to the thickness or half thickness of plate
is usually adopted.

The next four dynamic stability criteria were pre-
sented by Ari-Gur and Simonetta [11]. The first two crite-
ria are based on the observation of the deflection and load
pulse intensity values: if a slight increase of the load pulse
intensity causes a significant increase of the value of de-
flection then the dynamic buckling takes place – first crite-
rion; if a slight increase of the amplitude of the load pulse
causes a decrease the value of deflection then the dynamic
buckling happen – second criterion.

The third and fourth criterion is based on the response
analysis of the loaded edge of plate: if a small increase of
the force pulse amplitude causes a sudden increase of the
shortening value of loaded edge of plate then the dynamic
buckling occur – third criterion; if a small increase of the
pulse intensity of displacement of loaded edge causes the
change of reaction sign on the plate edge then the dynamic
buckling takes place - fourth criterion.

In 1987, Kleiber, Kotula and Saran proposed the quasi-
bifurcation criterion of dynamic stability based on rod sys-
tems [12]. According to this criterion, the structure loses
stability and a deflection begin to grow boundlessly when
the determinant of the tangent stiffness matrix is equal to
zero and the absolute value of the smallest eigenvalue is
greater than the absolute value of the nearest maximum,
which the smallest eigenvalue reaches. In the stability the-
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ory of dynamical systems, a tangent stiffness matrix corre-
sponds to the Jacobi matrix [13].

These criteria are often used by scientists
dealing with dynamic stability of structures
[14][15][16][17][18][19][20][21][22]. However, the analysis
of plate structures applying dynamic criteria is less used
[23][24][25][26][27][28]. Therefore, this paper presents the
impact of damping value on the dynamic response of the
plate using the dynamic tools and the compliance of the
selected method of stability analysis with the Volmir crite-
rion [7].

This article is a significant extension of the work [29],
which presents the influence of damping on the dynamic
response for only one value of thedamping coefficient. The
presented article contains several values of damping coef-
ficients together with a complete dynamic analysis, which
allows to present the nature of the solution for variable
damping values. The obtained results were comparedwith
the results for the plate without damping.

2 Studied plate
A square isotropic plate with dimensions b=l=100mm,
h=1mm (Fig. 1) was tested. The plate had the followingma-
terial constants: E=200GPa, υ=0.3. Themass of the plate is
m=78g. Theanalyzedplatewas simply supportedon theall
edges and loaded with a dynamic compressive load. The
dynamic load means the load that has been introduced
suddenly and lasts for an infinitely long time.

Figure 1: Studied plate.

The performed dynamic analysis of the plate structure
was carried out in relation to the research presented in
Volmir’s work. According to the Volmir stability criterion,

the loss of stability for the pulse load plates occurs when
themaximumdeflection of the plates are equal to a certain
constant value. Most often, the thickness or the half thick-
ness of plate is assumed as the critical value of deflection.

2.1 The plate without damping

Using the equation presented in Volmir’s work describing
the plate without damping effect, we obtain:

ζ̈ + ω2
0(1 −

σ*x
σ*cr

)ζ + ηζ 3 = 0 (1)

After transforming the above equation, the equation
can be written:

ζ̈ + Ω2
0(1 − kcosθt)ζ + ηζ 3 = 0 (2)

where: k = σ*t /σ*cr
1−σ*0/σ*cr

, Ω2
0 = ω2

0(1 −
σ*0
σ*cr
), ζ – deflection of

the plate, ω0 – natural frequency, σ*cr – critical stress, σ*0
– medium stress, σ*t – stress amplitude, η – parameter,
which value is dependent on the boundary conditions.

Transforming the equation (2) to dimensionless form:

ẍ + a(1 − kcosψτ)x + x3 = 0 (3)

where: a = 1 − σ*0
σ*cr
, ẍ = ζ̈

ω2
0ζs
, x = ζ

ζs , x
3 = ηζ 3

ω2
0ζs
, ζs – a static

deflection, ψ = θ
ω0
, τ = ω0t – dimensionless time. The

parameters for the analyzed case are: ω0=3014.3[rad/s],
η=0.23[rad/mm2s2] – the value of parameter for the plate
simply supported on the all edges, σ*cr=72.3[MPa]. In order
to further numerical analysis, the equation (3) has been
described by two first order differential equations:

ẋ1 = x2
ẋ2 = −a(1 − kcosψτ)x1 − x31 (4)

2.2 The plate with damping

Modifying the equation (2) by introducing the damping ef-
fect and transforming into a dimensionless form:

ẍ + hẋ + a(1 − kcosψτ)x + x3 = 0 (5)

where: h – the dimensionless damping factor. For the pre-
sented research: h=0.04; 0.02; 0.01 [30], the other param-
eters are the same as for the plate without damping.

Writing the equation (5) in the form of two first-order
differential equations we get:

ẋ1 = x2
ẋ2 = −hx2 − a(1 − kcosψτ)x1 − x31 (6)

All studies were made for the following initial conditions:
x1=0.01, x2=0.
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3 Numerical analysis
All analyzed cases in Figs 2 and 3 using coordinates: k −
ψ/2Ω (ψ = θ/ω0, Ω = Ω0/ω0) were presented. Graphs
changing the values of parameters σ0 and σt were created.
Calculations for parameters k and ψ/2Ω changing every
0.01 were executed.

Figure 2: The graphs of dynamic stability and instability areas for
the study plate with a damping factor parameter h equal to: (a)
0.04, (b) 0.02, (c) 0.01 and (d) for the plate without a damping fac-
tor.

Fig. 2 shows the areas of dynamic stability and insta-
bility (the circled areas) for the platewith a damping factor
parameter h equal to: 0.04 (a), 0.02 (b), 0.01 (c) and for the
plate without a damping factor (d). Fig. 2 was performed
by using the criteria of phase portraits, Poincarémaps and
FFT analysis.

Analyzing the areas of stability and instability (Fig. 2),
it can be stated that as the damping increases, the insta-
bility areas decrease. In unstable areas there are "stability
windows" in which, depending on the damping factor, ap-
pear in slightly different places

In addition, Fig. 2d contains the research presented
in Volmir’s work [7]. Comparing stability areas based on
Volmir calculations and results obtained using dynamic
tools, it can be stated that both solutions are fully compat-
ible. The results presented in Fig. 2 are an extension of the

Figure 3: The graphs of areas representing the chaotic solution for
the plate with a damping factor parameter h equal to: (a) 0.044, (b)
0.02, (c) 0.01 and (d) for the plate without a damping factor.

research presented by Volmir (Volmir presented areas in
the field of: k=(0.0; 0.5), ψ/2Ω=(0.85; 1.15)).

In order to present the research results more accu-
rately, the criterion of the largest Lyapunov exponents was
used (Fig. 3). This allowed to receive information about the
nature of the solution. Fig. 3 show areas of dynamic insta-
bility with a chaotic solution in gray. The dashed lines in-
dicates the boundary for the dynamic stability/instability
areas which corresponds to the circled part in Fig. 2.

Analyzing the studied plate by using the above crite-
rion, a significant change in the solution in instability ar-
eas can be observed. For the platewith damping effect, the
chaotic areas aremuch smaller compared to theplatewith-
out damping effect.

To more accurately present the results obtained, three
points from different stability areas were selected. For the
area of dynamic stability – (k=0.50, ψ/2Ω=0.70), for the
area of dynamic instability – (k=0.40, ψ/2Ω=1.00), for the
area of dynamic instability with the chaotic solution ex-
pected – (k=1.50, ψ/2Ω=0.20). Phase portraits, Poincaré
maps and FFT analysis for selected points weremade (Figs
4, 5, 6).

Analyzing a selected point from the stability area (Fig.
4), it can be stated that as a result of damping the tra-
jectory on the phase plane tends to a critical point (Fig.
4a). This is the case for all damping factor values. Conse-
quently, thePoincarémapdoesnot exist (Fig. 4c) and there
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Figure 4: The point from the dynamic stability area – (a, d) phase
portraits, (b, e) FFT analysis and (c, f) Poincaré maps for the plate (a,
b, c) with damping factor equal 0.04, 0.02, 0.01 and (d, e, f) without
damping effect.

Figure 5: The point from the dynamic instability area – (a, d) phase
portraits, (b, e) FFT analysis and (c, f) Poincaré maps for the plate (a,
b, c) with damping factor equal 0.04, 0.02, 0.01 and (d, e, f) without
damping effect.

Figure 6: The point from the dynamic instability area with the
chaotic solution expected – (a, d, g, j) phase portraits (b, e, h, k)
FFT analysis and (c, f, i, l) Poincaré maps for the plate with damping
factor equal: (a, b, c) 0.04; (d, e, f) 0.02; (g, h, i) 0.01 and (j, k, l)
without damping effect.

are no dominant frequencies on the FFT analysis graph
(Fig. 4b). The values of Lyapunov exponents are negative –
λ1=-0,020000, λ2=-0,020000 for a damping factor of 0.04;
λ1=-0,010000, λ2=-0,010000 for a damping factor of 0.02;
λ1=-0,005000, λ2=-0,005000 for a damping factor of 0.01.

For the plate without damping effect a quasi-periodic
solution was obtained (Figs 4d, 4f). There are two dis-
proportionate dominant frequencies on the FFT analysis
graph (Fig. 4e). There are so-called two-dimensional torus
(2D torus). The values of the largest Lapunov exponents
are approximately zero – λ1=0.000001, λ2=-0.000001. It
should be noted that this type of solution in the stability
area is the result of the absence of damping. As a conse-
quence, there is no attractor (attractors) to which the tra-
jectory would converge.

Examining solutions for the instability area (Fig. 5), a
significant increase in displacement x1 and velocity x2 in
both cases can be observed – in relation to solutions from
the stability area for the plate with and without damping
effect (Figs 5a, 5c, 5d, 5f). For FFT analysis, there is a signif-
icant increase in signal amplitude,whichwas expressed in
decibels (Figs 5b, 5e).

For the instability areawith damping effect, a periodic
solution for all three damping factors was obtained (Figs
5a, 5b, 5c). For all three damping coefficients, identical val-
ues of the dominant frequencies on the FFT analysis (Fig.
5b) and practically the same phase portrait (Fig. 5a) were
observed. The values presented on the Poincaré maps dif-
fered slightly for individual values of the damping factor.
On theFig. 5c, the triangle represents the result for a damp-
ing factor of 0.04, a circle for a damping factor of 0.02, a
square for a damping factor of 0.01. The differences were
small enough that they were presented in one graph (Fig.
5c), similar to Figures 5a, 5b. For all three damping factors
a solution with a period of 2 was reached. The FFT analy-
sis shows one dominant frequency and its third harmonic
(Fig. 5b). The values of the largest Lyapunov exponents
are negative – λ1=-0,020000, λ2=-0,020000 for a damping
factor of 0.04; λ1=-0,010000, λ2=-0,010000 for a damping
factor of 0.02; λ1=-0,005000, λ2=-0,005000 for a damping
factor of 0.01.

As in the stability area, a quasi-periodic solution for
the plate without damping was acquired (Figs 5d, 5f). On
the FFT analysis, two disproportionate dominant frequen-
cies and their harmonics appear (Fig. 5e). This is a 2D torus.
The values of the largest Lapunov exponents are approxi-
mately zero – (λ1=0.000003, λ2=-0.000003).

For the last selected point with k=1.50, ψ/2Ω=0.20 co-
ordinates, a significant increase in displacement x1 and
velocity x2 values compared to solutions from the stable
area was also observed (Figs 6a, 6c, 6d, 6f, 6g, 6i, 6j, 6l).
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The signal amplitude on the FFT analysis also increases
(Figs 6b, 6e, 6h, 6k).

For the damping factor of 0.04, a periodic solution of
period 2 was obtained (Figs 6a, 6b, 6c). Despite the same
typeof dynamic response as for the instability areas shown
in Figure 5a and 5b, the analyzed area shows a more com-
plex solution, e.g. much more harmonics appear on the
FFT analysis (Fig. 6b). For this value of the damping fac-
tor, the values of Lyapunov exponents are negative – (λ1=-
0,020000, λ2=-0,020000). For damping factors of 0.02 and
0.01, the selected point represents a chaotic solution (Figs
6d, 6f, 6g, 6i). On the FFT analysis, the dominant frequen-
cies cannot be specified. The signal spectrum is continu-
ous (Figs 6e, 6h). The values of the largest Lapunov expo-
nents are positive – λ1=0,031448, λ2=-0,043412 – for the
damping factor of 0.02; λ1=0,043478, λ2=-0,043478 – for
the damping factor of 0.01.

A chaotic solution for the plate without damping was
also reached (Figs 6j, 6l). The FFT analysis is continu-
ous and the dominant frequencies cannot be specified
(Fig. 6k). The largest Lyapunov exponents take values:
λ1=0,043540, λ2=-0,043540.

4 Conclusions
The aimof the researchwas to analyze the impact of damp-
ing value on the dynamic response of plate. This paper
presents stability and instability areas for various values
of damping factor. They were compared with areas for a
plate without damping. The assessment of the stability
of the areas presented in the research and the nature of
the solution was carried out using dynamic tools such as:
phase portraits, Poincaré maps, FFT analysis, the largest
Lyapunov exponents. The compliance of selectedmethods
of stability analysis with the Volmir criterion was also pre-
sented.

After testing, it can be concluded that the introduction
of damping to the mathematical description of the plate
is of great importance in the context of dynamic response.
There is a change in the occurrence of instability areas and
a very big difference in solutions that are chaotic in rela-
tion to the plate without the damping effect. By changing
the value of the damping factor, various solutions in insta-
bility areas were observed. As it results from the tests car-
ried out for the last selected point (k=1.50, ψ/2Ω=0.20), a
change in the value of the damping factor affects the na-
ture of the solution. For the damping factor equal to 0.04 a
periodic solution with a period of 2, while for the remain-
ing factors a chaotic solution was acquired.

In addition, for all analyzedpoints, the transition from
stability to instability areas was associated with a signifi-
cant increase in displacement x1 and velocity x2 on phase
portraits and Poincaré maps. The FFT analysis showed a
significant increase in signal amplitude.

Using the criterion of the largest Lyapunov exponents,
negative exponents for the critical point and periodic so-
lution were obtained. For the quasi-periodic solution the
exponents had values equal to zero, and for the chaotic
solution the largest exponent was positive.

For the plate with damping effect, there was a tran-
sition from a critical point to a periodic solution, and
then (for damping factors equal to 0.02 and 0.01) for a
chaotic solution. For the plate without damping effect, a
quasi-periodic solution (2D torus), which bifurcated into
a chaotic solution was presented. It should be mentioned
that for all analyzed cases, the transition from periodic
to chaotic solution took place through a series of period–
doubling bifurcations.
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