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Abstract: This article examines a single Duffing oscillator
with a time delay loop. The research aims to check the im-
pact of the time delay value on the nature of the solution,
in particular the scenario of transition to a chaotic solu-
tion. Dynamic tools such as bifurcation diagrams, phase
portraits, Poincaré maps, and FFT analysis will be used to
evaluate the obtained results.

Keywords: Duffing oscillator, time delay loop, bifurcation
diagram, phase portraits, Poincaré maps

1 Introduction
The analysis of nonlinear dynamical systems has been the
subject of intense research in recent decades. When exam-
ining such systems, rapid changes in the stability of the
solution (bifurcations) or irregular solutions, sensitive to
initial conditions (chaos), can be observed. The cause of
observation of chaotic behaviors in dynamical systems is
their property, consisting in the exponential divergence of
initially closely related trajectories in the phase space area
[1]. The development of research on the theory of chaos
has led to the emergence of many new topics such as chaos
control [2, 3], synchronization of chaos [4, 5], and roads to
chaos.

2 Roads to chaos
The first scenario of the transition of the system from peri-
odic to chaotic behavior was presented by L.D. Landau in
1944 [6].

Four years later (1948), an independent theory was pre-
sented by E.A. Hopf [7]. The Landau-Hopf scenario assumes
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that during the passage of a certain parameter through a
critical value (e.g., the Reynolds number (R)), which is a pa-
rameter characterizing the flowof fluids, the stationary flow
loses its stability. As the Reynolds number increases, new
frequencies appear. For R→ ∞, the speed of the formation
of new frequencies increases, which leads to the appear-
ance of a wide frequency band, characteristic of chaotic
behaviors.

Another similar scenario of the transition to chaos is
the Newhouse-Ruelle-Takens scenario [8]. It refers to and
corrects the Landau-Hopf scenario.

In 1971, D. Ruelle and F. Takens proved [9] that an infi-
nite series of Hopf bifurcations is not necessary to achieve
destabilization of the system. They presented a system in
which, after three Hopf bifurcations, the system reaches an
orbit that may lose its stability and pass to a strange chaotic
attractor.

Another scenario of the transition to chaos was pro-
posed byM.J. Feigenbaum in 1978 [10, 11]. According to him,
the road to chaos can be done through period-doubling bi-
furcation.

The next scenario of the transition to chaos is the
Pomeau and Manneville scenario [12, 13] presented in 1980.
The research they obtained shows the possibility of transi-
tion to chaotic behavior through sudden bifurcations. This
transition is related to the occurrence of system intermit-
tency, i.e., a system shift between two types of behavior –
almost periodic and chaotic behavior.

Current research very often refers to the above-
mentioned scenarios when analyzing nonlinear dynamical
systems.

3 Nonlinear dynamical systems
with time delay

The research carried out so far shows that the dynamics of
systems with the introduced time delay may be very com-
plicated and may have a number of interesting features. In
addition, it has been shown that the use of time delay in
dynamical systems is one of the effective methods of con-
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trolling (or anti-controlling) chaos because the delay time
can be easily controlled and implemented in real applica-
tions.

Already in the ’70 s, studies in which the introduction
of a time delay to the analyzed systems led to very compli-
cated, chaotic behaviors (Mackey and Glass [14], Farmer
[15], Lu and He [16], Awrejcewicz and Wojewoda [17]) were
presented.

In the following years, A. Maccari [18] presented the
effect of the time delay and the feedback gain on the peak
amplitude of the fundamental resonance in the nonlinear
Van der Pol oscillator. He showed that the selection of ap-
propriate values of the time delay and the feedback gain
reduces the value of the peak amplitude and suppresses
the quasi-periodic motion.

In the work of P.Yu, Y.Yuan, J.Xu [19] from 2002, a non-
linear oscillator with an introduced time delay to the linear
and nonlinear parts of the equation in the feedback loop
was presented. By changing the value of the time delay, the
rich dynamics of the system were observed.

In 2003, J.Xu and K.W.Chung [20] presented a Van der
Pol-Duffing oscillator with a time delay loop introduced
to the linear and nonlinear parts of the equation. They
were given two roads to the chaotic solution – by period-
doubling bifurcation and torus decay bifurcation.Moreover,
they recognized that the time delay plays a very important
role in the analysis of the behavior of dynamical systems.
Appropriate selection of the time delay value effectively
damps vibrations. They found that the time delay can be
used as a simple “switch” to control the behavior of the
system. Thanks to it, it is possible not only to change an
unstable solution into a stable one but also to generate
chaotic solutions.

In this article, the nonlinear Duffing oscillator with
the time delay loop and in particular the scenario of the
transition to a chaotic solution will be examined.

4 A single Duflng oscillator with
time delay loop

A single Duffing oscillator with a time delay loop can be
represented by a dimensionless differential equation:

z̈ (t) + cż (t) + az (t) + bz(t)3 = p [z (t − τ) − z (t)] (1)

Substituting x = z, y = ż, a single second-order differen-
tial equation, Eq. (1), can be converted into two first-order

differential equations:

ẋ (t) = y (t) (2)

ẏ (t) = −cy (t) − ax (t) − bx(t)3 + p [x (t − τ) − x (t)]

where τ is the time delay value – bifurcation parameter, p =
30.0 – delay gain, and the other dimensionless parameters
are: a = 1.0; b = 10.0; c = 0.03162.

In this work, the influence of the change in the value of
the time delay τ on the dynamics of the tested system was
analyzed. The research was carried out in the MATLAB and
OriginPro programs. The obtained results are presented
by using a bifurcation diagram (Figure 1), phase portraits,
Poincaré maps, and FFT analysis (Figures 2–5). All figures
show dimensionless values.

Figure 1 shows a bifurcation diagram where three con-
secutive Hopf bifurcations (τ1, τ2, τ3) can be observed. For
the parameter value τ1 = 0.01, the first Hopf bifurcation
takes place. The system changes from a stationary solution
to a periodic solution (Figure 2a, 2b), and the first vibration
frequency appears.When analyzing the resulting frequency

Figure 1: Bifurcation diagram of displacement x versus delay param-
eter τ for a single Duflng oscillators with time delay loop.

Figure 2: Phase portrait (a), Poincare map (b) and FFT analysis (c) for
the time delay τ=0.50.
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Figure 3: Phase portrait (a), Poincare map (b) and FFT analysis (c) for
the time delay τ=0.72.

Figure 4: Phase portrait (a), Poincare map (b) and FFT analysis (c) for
the time delay τ=1.05.

Figure 5: Phase portrait (a), Poincare map (b) and FFT analysis (c) for
the time delay τ=1.40.

using the FFT analysis (Figure 2c), this frequency is repre-
sented by a single peak Ω0. The limit cycle in the range
of the delay parameter τ ∈ ⟨0.01 ÷ 0.67⟩ occurs. For τ2 =
0.68, the second Hopf bifurcation appears. The periodic
solution turns into a two-frequency quasi-periodic solution
(Figure 3a, 3b). It is represented by a set of points that forms
a closed curve on the Poincaré map (Figure 3b). It should
be noted that, in Figure 3b, the set of points does not form
a closed curve – it is only related to the analysis time. By
increasing the analysis time, a closed curve would appear
on the map. A 2D torus is formed, which in the FFT analysis
(Figure 3c) is represented by two frequencies dispropor-
tionate to each other. The first frequency of vibrations is
represented by the peak Ω0, while the second frequency is
disproportionate to the first, related to the constant value of
the shift of the peaks in relation to the peak Ω0. The values
of newly formed frequencies in relation to the peak Ω0 can
be calculated using the formula:

Ωn = Ω0 + nβ1 (3)

where β1 – a constant offset value between peaks and n –
analyzed frequency number. For example, the frequency
Ω2 in Figure 3c is:

Ω2 = Ω0 + 2β1 = 3.46133 + 2 * 0.69869 = 4.85871

Further increasing the time delay (τ ∈ ⟨1.05 ÷ 1.17⟩) re-
sults in a period-doubling bifurcation on the 2D torus (Fig-
ure 4a, 4b). Similar to Figure 3b, in Figure 4b the set of
points that form a closed curve was not obtained. This is
only related to the analysis time because by increasing the
analysis time, a closed curve would appear on the map. Fig-
ure 4c shows that between the peaks Ω−4, Ω−2, Ω0, Ω2, Ω4,
Ω6 – representing the 2D torus – there are new ones that
divide the distance between them exactly by half. To calcu-
late the value of one of the newly formed peaks, the formula
in Eq. (3) should be used. For example, the frequency Ω−3
in Figure 4c is:

Ω−3 = Ω0 − 3β1 = 3.30071 − 3 * 0.24896 = 2.55383

For the value of the parameter Ω3 = 1.18, a chaotic solution
occurs (Figure 5a, b). In the FFT analysis, the dominant
frequencies cannot be specified. All peaks are located very
close to each other and in a chaotic manner, as a result
of which the analysis and interpretation of the obtained
results are impossible to perform.

5 Conclusions
This article examines a single Duffing oscillator with a time
delay loop. The research aimed to check the impact of the
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time delay value on the nature of the solution, in particular
the scenario of transition to a chaotic solution. Theobtained
results using dynamic tools such as bifurcation diagrams,
phase portraits, Poincaré maps, and FFT signal spectrum
analysis were presented.

After the research for a single Duffing oscillator with
a time delay loop, it can be concluded that the scenario of
transition to chaotic behavior is the result of three Hopf
bifurcations (Landau-Hopf scenario). As a result of the ap-
pearance of successive Hopf bifurcations, the first vibration
frequency appears – for the first bifurcation (τ1); or new,
disproportionate vibration frequencies appear – for the
second and third bifurcations (τ2, τ3).

After the conducted research, the appearance of period-
doubling bifurcation on the 2D torus was also observed.
This bifurcationwas associatedwith the appearance of new
frequencies, dividing the distance between the frequencies
representing the 2D torus by exactly half.
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