
 
Exercise 10 

 

RESONANCE FREQUENCIES OF TORSIONAL  

VIBRATIONS OF THE SHAFT  

 

 

1. Aims of the experiment 

 

• Measurement of resonance frequencies of the shaft with three discs. 

• Observation of the corresponding vibration modes of the shaft. 

• Comparison of the experimentally measured resonance frequencies with those calculated analytically. 

 

 

2. Theoretical introduction 

 

A model of the system under consideration is shown in Fig. 10.1. It is an example of the three-degree-

of-freedom system. We consider natural torsional vibrations of the shaft fixed at one of its ends. Three 

identical discs having the moment of inertia B are fixed to the shaft of the torsional stiffness k1 and k.  

 The differential equations of motion are as follows: 
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Fig. 10.1. Model of the vibrating system 

  

  

In order to determine the natural frequencies of torsional vibrations of the system, the Holzer 

method has been applied. The particular solutions to Eqs. (10.1) have been assumed in the form of 

harmonic functions: 
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where: 

ω – assumed natural frequency of torsional vibrations, 

Φ1, Φ2, Φ3 – amplitudes of torsional vibrations of individual discs. 

 

Substituting the assumed solutions (Eqs. (10.2)) in Eqs. (10.1), we obtain the system of algebraic 

equations as follows: 
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The natural frequencies of torsional vibrations of system (10.1) can be calculated on the basis of 

Eqs. (10.3)÷(10.5). At the beginning, an arbitrary amplitude of the third disc has to be assumed, e.g., 

Φ3 = 1 [rad]. Next, we can determine the amplitude Φ2 substituting a value of ω from the expected 

range of frequency: 

 

k

B 2
3

32

ωΦ
−Φ=Φ .       (10.6) 

 

Taking into consideration the determined value of Φ2 in Eq. (10.4), we can calculate the amplitude 

Φ1: 
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Similarly, using the value of Φ1 in Eq. (10.3), we can calculate the amplitude at fixed end of the 

shaft Φ0: 
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If ω is a natural frequency of the system (Eqs. (10.3)÷(10.5)), then the boundary condition Φ0 = 0 

has to be fulfilled. 

The above description shows that the Holzer’s method used in the system under consideration 

consists in the investigation of the solutions to Eq. (10.8) in the expected range of frequency. If the 

currently tested value of ω is not a natural frequency of the system, then the boundary condition Φ0 = 

0 is not fulfilled. Next steps are to be done with the tested value of ω, aiming at fulfilling the above 

condition for Φ0 in order to estimate the natural frequency ω with the required precision. 

 

 

2.1.  Example of calculations 

 
Problem 

Determine the natural frequencies and main modes of torsional vibrations of the massless shaft 

with two discs of the inertia moment B1 and B2 (Fig.10.2) by means of the Holzer’s method. 

 

Given data: 

B1 = B2=B=10-5 kgm2; 

J0 = 10-6 m4; 

ll = l2 = 0,1 m; 

G = 8×10
10

 Nm
-2

 ; 

 

 

 
Fig. 10.2. Model of the shaft 

 
Solution 

 

The torsional stiffness of shaft sections (of the length ll = l2 = l) can be calculated from the relation: 

 G,J0   

 B1  B2 

 ϕ1  ϕ2  ϕo 

 l1  l2 
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The equations of torsional vibrations of the system under analysis (Fig. 10.2) are as follows: 
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The harmonic solutions to the differential equations (b) and (c) are expressed as: 

 

tt ωϕωϕ sin;sin 2211 Φ=Φ=     (d) 

 

After the substitution of the assumed solutions (d) into the equations of motion (b) and (c), we 

obtain the following algebraic equations: 
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We assume the value of amplitude Φ2 = 1 rad and take the tested value of 

ω = 1,5×10
5
 rad/s from the expected range of frequency. Next, we determine the amplitude Φ1 using 

Eq. (f): 
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and the amplitude Φ0 using Eq. (e):  
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The assumed value of ω = 1.5×10
5
 rad/s is not the natural frequency of the system under 

consideration because the boundary condition Φ0 = 0 is not fulfilled. The estimation finishes with the 

residual value of amplitude for this frequency ∆Φ = Φ0  = 0.235 rad. The calculations are summarized 

in Table 10.1. 



Table 10.1     ω1 = 1.5×10
5
 rad/s   ∆Φ = Φ0 = 0.235 rad 

 

B Bω2 
Φn Bω2

Φn ∑ 

Bω2
Φn 

k ∑Bω2
Φn/k n 

kgm
2
 Nm rad Nm Nm Nm/rad rad 

1 10
-5 

2.25×10
5
 

0.7187 1.62×10
5
 

3.87×10
5
 

8×10
5
 0.48375 

 

Let us repeat now the calculations for the next value of ω with the assumed step of calculations (e.g., 

∆ω = 0,002×10
5
 rad/s) using a computer spreadsheet, e.g., EXCEL. The results for the frequency range 

ω = 0÷1,748×10
5
 rad/s are presented in Fig.10.3, where the amplitude Φ0(∆Φ) versus the frequency ω is 

shown. The estimated natural frequencies amount to ω1 = 1,748×10
5
 rad/s and 

ω2 = 4,576×10
5
 rad/s, because the boundary condition (Φ0 = ∆Φ ≈ 0) is fulfilled for these values. The 

detailed calculations for these frequencies are presented in 

Table 10.2 and Table 10.3. We can see that the residual value ∆Φ is close to zero. 
 

Table 10.2     ω1 = 1.748×10
5
 rad/s  ∆Φ = Φ0 = 6.26×10

-5
 rad 

 

B Bω2 Φn Bω2Φn ∑ 

Bω2
Φn 

k ∑ 

Bω2
Φn/k 

n 

kgm
2
 Nm rad Nm Nm Nm/rad rad 

1 10
-5 

2.05×10
5
 

0.618 1.89×10
5
 

4.93×10
5
 

8×10
5
 0.617 

2 10
-5 

3.05×10
5
 

1.0 3.05×10
5
 

3.05×10
5
 

8×10
5
 0.381 

 

Table 10.3     ω2 = 4.576×10
5
 rad/s  ∆Φ = Φ0 = -1.26×10

-3
 rad 

 

B Bω2 Φn Bω2Φn ∑ Bω2Φn k ∑Bω2Φn/

k 

n 

kgm
2
 Nm rad Nm Nm Nm/ 

rad 

rad 

1 10
-5 

20.94×10
5
 -1.617 -

33.86×10
5
 

-

12.92×10
5
 

8×10
5
 

-1.615 

2 10
-5 

20.94×10
5
 1.0 20.94×10

5
 20.94×10

5
 8×10

5
 

2.617 
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Fig. 10.3. Diagram of the amplitude Φ0(∆Φ) versus the natural frequency ω. 

 



 

 

2.2.  Principal modes of vibrations 
 

Principal modes of torsional vibrations of the system under consideration are defined by the ratio of 

the vibration amplitudes corresponding to the determined natural frequencies. This ratio can be read 

from column 4 of Table 10.2 (for the natural frequency ω1) or Table 10.3 (for the natural frequency 

ω2). A graphic presentation of principal modes of vibration for the considered example is shown in 

Fig. 10.4. 
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Fig. 10.4. Principal modes of vibration corresponding to: a) natural frequency ω1, 

b) natural frequency ω2 

 
 

3. Experimental stand 

 

 

 

 

Parameters: 

  
B = 0.0085 kgm

2
;  

k = 13.14 Nm/rad;  

k1 = 6.57 Nm/rad. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10.5. Experimental stand 

 

A scheme of the experimental stand is shown in Fig. 10.5. It consists of vertical column 1 with the 

base and shaft 2 of the length 0.8 m and the diameter 0.004 m with three discs. The lower end of the 

shaft is fixed. The upper end can rotate in the bearing. Torsional vibrations are excited using lever 

mechanism 3, which is driven by electrical engine of direct current 4. The modes of torsional vibrations 

can be visualized by means of vertical threads 5. 

 

 

4. Experiment 

 

Φ1 = 0,618 
Φ2 =1,0 

Φ1 = -1,617 

Φ2=1,0 

 5 
 4 

 3 

 1 

 2 



1) Estimate torsional natural frequencies of the system using the Holzer’s method. The calculations 

should be carried out by means of the EXCEL computer spreadsheet, according to the table of 

calculations presented below. The investigated range of frequency is f = 0 ÷ 12 Hz. Assume the 

step of frequency ∆f = 0.05 Hz. Draw up a diagram of the amplitude Φ0 versus the natural 

frequency ω  (similar to the diagram in Fig. 10.3) on the basis of the calculations carried out. The 

values of natural frequencies correspond to zero places of the function Φ0(ω) on the diagram. The 

remaining amplitudes Φ1, Φ2 and Φ3, which correspond to natural frequencies, determine the 

principal modes of vibrations. 

2) Start the system exciting torsional vibrations of discs and read three consecutive resonance 

frequencies from the frequency measurement instrument. The system vibrates at one of natural 

frequencies when the local maximum of amplitudes of torsional vibrations occurs. The angles of 

torsional deflection of discs can be observed by means of threads. At the resonance frequency, the 

threads assume the shapes corresponding to the principal modes of vibrations. 

3) Record the values of resonance frequencies read from the measurement instrument in the table. 

4) Draw up the observed principal modes of vibrations according to the presented example (Fig. 10.4). 

5) Compare the numerical calculations with the results of experiment and write the conclusions. 

 

 

 

5. Report 
 

The report on the experiment should contain: 

 

1. Estimation of natural frequencies according to Table 10.4. 

2. Table 10.5 with a comparison of the numerical and experimental results. 

3. Diagrams presenting the principal modes of vibrations. 

4. Conclusions. 

 

 

  

Table 10.4 
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Table 10.5 

 



ωe  (experiment)  

1 2 3 
Average 

value  

ω 
(calculation) ω

ωe  Resonance 

frequencies 

Hz Hz Hz rad/s rad/s - 

ωΙ       

ωΙΙ       

ωΙΙΙ       
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