
 
Exercise 12 

 

EXPERIMENTAL IDENTIFICATION PROCESS CONTROL 

 

 

1. Aim of the exercise 

 
Theoretical and experimental identification of oscillatory unit parameters.  

 

 

2. Theoretical introduction 

 

Figure 12.1 shows a block diagram of the oscillatory unit identification system which consists of an 

oscillatory unit and an operational amplifier. 

 

 

 

 

 
Fig. 12.1. Block diagram of the oscillatory unit identification system 

 

 

2.1. Oscillatory unit parameters 

 

An electrical scheme of the oscillatory unit is shown in Fig. 12.2. The resistor R and the inductor L 

are connected in series and the capacitor C is connected in parallel. The input voltage V1 is the input 

signal, the output voltage V2 is the output signal. 

 

 

 

 

 

 
Fig. 12.2. Oscillatory unit scheme 

 

The transfer function of the system shown in Fig. 12.2 can be derived on the basis of the 

Kirchhoff’s law. Let us assume that the resistance of the system output is very high and the whole 

current i flows in the parallel branch. For the left closed loop, the input voltage drop is equal to the 

sum of voltage drops across the resistor R, the inductor L and the capacitor C.  
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On the basis of the above assumption, the change in the output voltage is equal to: 
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From Eq. (12.2), one can assign the current value: 
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After substituting relation (12.3) to Eq. (12.1), we obtain:  
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The oscillatory unit parameters are as follows: 
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Then, the oscillatory unit equation has the following form: 
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Finally, the transfer function of the system in the form of Laplace transforms is: 
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2.2. Operational amplifier (op-amp) 
 

The op-amp is basically a differential amplifier, having a large voltage gain, very high input 

impedance and low output impedance. The op-amp has an “inverting” or (-) input and a 

“noninverting” or (+) input and a single output. The op-amp is usually powered by a dual polarity 

power supply in the range+/- 5 volts to +/- 15 volts. 

 

2.2.1. Noninverting amplifier 

 

The noninverting op-amp has the input signal connected to its noninverting input (Fig. 12.3), thus 

its input source recognizes infinite impedance. The input resistor RG is grounded. There is no input 

offset voltage because VE = 0, hence the negative input has to be at the same voltage as the positive 

input. The 

op-amp output drives current into RF until the negative input is at the voltage VIN. This action causes 

VIN to appear across RG. 

 

 

 

 

 

 

 

 

 

 
    Fig. 12.3. Noninverting op-amp 

   

The voltage divider rule is used to calculate the transfer function of the 

op-amp. On the basis of the electrical scheme in Fig. 12.3, one can write: 
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The voltage gain is always more than 1. As the signal moves in either direction, the output will 

follow in phase to maintain it at the same voltage as the input signal.  

 

 

 

 

 

RF 

+ 

-
VE 

VI

VI

VOU

RG 



2.2.2. Inverting amplifier 

 

In this case, the inverting op-amp is connected by means of two resistors RG and RF, such that the 

input signal is applied in series with RG, and the output is connected back to the inverting input 

through RF (Fig. 12.4). 

 

 
 

 

 

 

 

 

 

 
Fig. 12.4. Inverting op-amp 

 

The noninverting input of the inverting op-amp circuit is grounded. To derive the input-output 

relationship, it is assumed that the input error voltage is zero.  The current flow in the input leads is 

assumed to be zero, hence the current flowing through RG equals the current flowing through RF. 

Using the Kirchhoff’s law, one can write: 
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The algebraic manipulation of (12.10) gives: 
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During the operation, as the input signal tends to be positive, the output will move negative and 

vice versa. It is worth noticing that in this case the gain is only a function of the feedback and gain 

resistors. The actual resistor values are determined by the impedance levels that the designer aims to 

establish. 

 

 

3. Identification procedure 

 

Similarly as the sinusoidal signal, white noise can also be used as the test signal in the 

identification process. Theoretically, the white noise signal contains a full spectrum of frequencies of 

the same amplitudes. Practically, the white noise signal is characterized by a constant value of the 

spectral concentration in the frequency bandwidth. 

When the stochastic stationary input signal characterized by the spectral power density Pi(ω) acts 

in a linear system, then 
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where: |G(jω)| - sinusoidal transfer function amplitude of the system, 

 P0(ω)  - spectral power density of the output signal. 

On the basis of Eq. (12.11), for the constant value Pi(ω) = K, one can determine the sinusoidal transfer 

function amplitude of the system: 

KPjG /)()( 0 ωω =       (12.12) 

Equation (12.12) determines the identification procedure when the oscillatory unit system is excited by 

the white noise input signal. 
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4. Course of the exercise  

 

Figure 12.5 shows a block diagram of the oscillatory unit identification system with input and 

output blocks. 

 

 

 

 

 
Fig. 12.5. Block diagram of the identification system 

 

On the basis of the data of the oscillatory unit system and the dependences presented in Part 2, one 

should calculate theoretical values of oscillatory unit parameters, namely: the time constant (T), the 

dimensionless damping coefficient (ξ) and the natural frequency of the unit (ω). 

The experimental identification process will be carried out in two different ways. At first, the 

oscillatory unit system is excited with a sinusoidal input signal. In this part of the investigations, the 

personal computer plays the role of a two-channel oscilloscope. For different frequency values, the 

input and output signals and their phase angles should be measured. On the basis of the experimental 

data, the frequency response and oscillatory unit parameters are to be determined. 

In the second part, the oscillatory unit system is excited with the white-noise input signal. On the 

basis of the identification procedure (12.12) and by means of the FFT computer algorithm, the 

frequency response and oscillatory unit parameters are determined in another way. 

 

 

5. Laboratory report should contain: 

1. Aim of the exercise. 

2. Calculation results of the oscillatory unit parameters. 

3. Experimental results of the frequency response obtained in the classical way. 

4. Frequency response in a graphic form. 

5. Unit parameters determined in the experimental way. 

6. Computer printout of the time response of the white-noise signal. 

7. Amplitude frequency response (results of the investigations in a graphic form). 

8. Phase angle frequency response of the system. 

9. System parameters determined from the frequency response. 

10. Comparison of results, conclusions and remarks. 
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