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Exercise 3 

 

CONTROL SYSTEM REPRESENTATION 

 

 

1. Aim of the exercise 

 
Determination of transfer functions and state-space descriptions of simple control systems on the 

basis of their block diagrams. Control system representation with the MATLAB – SIMULINK 

software package. 

 

2. Theoretical introduction 

 
In the frequency-domain analysis of control system dynamics, the attention is usually focused on 

the relationship between the output signal and the input signal. The input–output relationship is 

characteristic of all controllable processes. The most appropriate way to visualize this relationship 

are block diagrams, at which parts of the control system are represented by geometric figures, 

such as rectangles, circles, triangles connected with lines. Lines with arrows represent signal 

flows. Table 3.1 shows elements of such diagrams. 

 
Table 3.1. Elements of the block diagrams 

 
Symbol Description 

 

 

Signal x(t) 

 

 

 

 

Branch point 
Only one input signal – more 

than one output signal of the 

same value 

 

 

 

 

Summing 
More than one input signal – only 

one output signal 
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Block 
Graphical representation of the 

dynamic system 

To build a block diagram, one should know a mathematical model of the system. Two forms of 

mathematical models of control systems are mostly used in the control theory: transfer functions 

and a state-space representation. 

 

2.1. Transfer function description 

 

To illustrate the transfer function description process, a one-degree-of-freedom dynamic system is 

taken into account. The system is shown in Fig. 3.1. The force F(t) acting on the mass m is 

understood as the input signal and the output signal is the mass displacement y(t). The mass is 

suspended on a spring with the stiffness coefficient k and a dashpot representing viscous damping 

of the coefficient c. 

 

  

 

Mathematical 

model of the 

dynamic 

process 
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Fig. 3.1. One-degree-of-freedom dynamic system 

 

The equation of motion of the considered model is represented in the following form:  

)(tFykycym =++ &&& .       (3.1) 

After some transformations, equation of motion (3.1) takes the form: 
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where:  
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The calculation of the Laplace transform of the left- and right-hand sides of Eq. (3.2), on 

assumption of zero initial conditions, gives: 
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where: Y(s) – Laplace transform of the system output, and F(s) – Laplace transform of the system 

input. 

The transfer function G(s) in this case has the form: 
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Generally, to determine the transfer function of the SISO (single – input – single – output) system, 

it is described by the following linear differential equation: 
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where: an … a0 , bm … b0 – constant coefficients, one should calculate the Laplace transform of 

Eq. (3.7), assuming zero initial conditions, as: 
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The transfer function G(s) is the ratio of the Laplace transform of the system output Y(s) to the 

Laplace transform of the system input U(s), when all initial conditions are zero: 
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Then, the block diagram of the system has the form shown in Fig. 3.2.  
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Fig. 3.2. Block diagram of the SISO dynamic system 

 

Multidimensional linear time invariant systems are described by the matrix transfer functions: 
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   (3.10) 

 

Eq. (3.10) can be written in a shorter form, with bold letters representing the matrices: 

Y(s) = G(s) U(s)        (3.11) 

 

 

2.2. State-space representation 

 
The state of a dynamic system is defined by a set of n variables, whose time evolution describes 

completely the internal behaviour of the system. The dimensional integer n is called the order of 

the state-space representation. A continuous, linear time invariant system is defined by a set of n 

first order differential equations which can be written in the matrix form:  

)()()( ttt uBxAx +=&        (3.12) 

where: x(t) – n-dimensional state vector, 

 u(t) – m-dimensional input signal vector, 

   A - state matrix (n × n), 

   B - input matrix (n × m) 

In most cases, only r functions of the state can be measured or directly observed. Thus, the r-

dimensional external output vector y(t) can be expressed in the matrix form: 

)()()( ttt uDxCy +=        (3.13) 

where: C - output matrix (r × n), 

  D - transition matrix (r × m).                      

State equation (3.12) and output equation (3.13) constitute the state-space representation of the 

system. 

 

To obtain the relationship between the matrix transfer function of the system G(s) and its state-

space description, one should assume that the initial state x(0) is zero. In this case, the Laplace 

transform of the state vector is: 

X(s) = (s I – A)
-1 B U(s)       (3.14) 

The Laplace transform of the output is as follows: 

Y(s) = C X(s) + D U(s)       (3.15) 

Substituting Eq. (3.14) into Eq. (3.15), we obtain: 

Y(s) = C (s I - A)-1 B U(s) + D U(s)      (3.16) 

On the basis of Eq. (3.16), the matrix transfer function of the system is: 
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3. Course of the exercise  

 
The block diagram of the feedback system, which is considered in the exercise, is shown in Fig. 

3.3. In this diagram, signals are expressed in the Laplace transform forms. During the exercise, 

one ought to perform the following operations:  

a) determine the closed loop transfer function (between Y(s) and U(s)), 

b) describe the error transfer function (between E(s) and U(s) - Fig. 3.3), 

c) determine the unit step response on the basis of the Laplace transformation,  

d) determine of the state and output matrix equations of this system, 

e) describe the system definition with the MATLAB – SIMULINK software package, 

f) verify the results of investigations with the MATLAB – SIMULINK procedures. 

 

 

 

 

 

 

 

 

 
Fig. 3.3. Block diagram of the feedback system, G1(s) = 10/s, G2(s) = 1/(s+2),  

 G3(s) = 1/(s+3)   

 

 

 

4.  Laboratory report should contain: 

1) Aim of the exercise. 

2) Block diagram of the system under consideration. 

3) Results of the manual calculations. 

4) Results of the computer calculations. 

5) Conclusions and remarks. 
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