
 
Exercise 7 

 

DYNAMIC BALANCING OF RIGID ROTORS 

 

 

1. Aim of the experiment 

 

 The aim of the experiment is to get acquainted with the technique of dynamic balancing of rigid 

rotors by means of an automatic balancer with an electronic measurement system. 

 

 

2. Theoretical introduction 

 

2.1. Definition of a rigid rotor 
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Fig. 7.1. Rigid rotor 

 

 

In the design of rigid rotors, a circular symmetric mass distribution is assumed. In such a case, the self-

balancing of inertia forces is ensured. However, the ideal symmetric mass distribution cannot be 

achieved in actual rotors due to technological reasons. Thus, during the motion, unbalanced centrifugal 

inertia forces act on the mass elements (mi) of the rotor. These forces (Fi) are proportional to the 

accelerations (ai) of individual mass centres: 

 

iii amF −= .        (7.1) 

 

 

For the constant angular velocity ω, there is a centripetal acceleration ai = ω2
ri, where ri is a radius of 

the mass centre position (see Fig. 7.1). 
A model of the system of inertia forces acting on mass elements of an arbitrary rotor is presented in 

Fig. 7.1. Let us imagine that the rotor under consideration consists of a set of thin discs divided by 

planes perpendicular to the rotor axis. The inertia force 

 

iii rmF
2ω−=         (7.2) 

 

is applied to the mass centre of each individual disc and it rotates together with the rotor during its 

motion. These forces cause the rotor bending, which becomes more intensive when the angular 

velocity of the rotor increases. During the increase in the velocity ω, positions of mass centres of all 

imaginary discs vary (as a result of bending), according to the shape of the resonance curve. It causes 

that the diagram of the total rotor load F as a function of the velocity ω, shown in Fig. 7.2, has also a 



shape of the resonance curve, even though it would appear that the rotor load should vary according to 

the parabola resulting from Eq. (7.2). The maximum rotor load occurs at ω = ωc1, where ωc is the first 

critical speed of the rotor, equal to the first resonance (natural) frequency ωn1. 
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Fig. 7.2. Diagram of the total rotor load F as a function of the velocity ω; Fc is the critical load at the first critical 

speed of the rotor ωc1 

 

The behaviour of the rotor described above subjected to centrifugal inertia forces shows that no rotor 

can be treated as a rigid one in advance, i.e., independently of its speed of motion. We can assume that 

the rotor under consideration is rigid only in the case when its deflection is negligibly small. Such a 

situation takes place when the working speed ω is sufficiently small in comparison with the first 

critical speed ωc1. Then, the rotor can be treated as a non-deformable one, i.e., with an invariable mass 

distribution. 

The above condition is determined by the following practical criterion, which allows us to recognize 

the dynamic features of the rotor: the rotor can be considered as a rigid one, if its angular (rotational) 

working velocity does not exceed half of the first critical speed, i.e.: 
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or 
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If working velocities are higher than ωc1/2, then it is necessary to consider an influence of the rotor 

deflection due to inertia forces and corresponding dynamical effects. Such a rotor can be considered as 

a flexible one. A distinction between flexible and rigid rotors is of essential significance from the 

viewpoint of the selection of a balancing method. 

 

2.2.  Balancing of a rigid rotor 

 

Every rotor is unbalanced due to an inaccuracy in the manufacturing process. The rotor is unbalanced 

if its principal axis of inertia does not overlap with the axis of rotation (see Fig. 7.3a). An occurrence 

of centrifugal inertia forces during the rotational motion of the rotor, caused by its unbalance, is a 

reason of the appearance of many unwanted phenomena, such as variable load of bearings, vibrations 

of the supporting construction and surrounding devices, noise. We can reduce or even eliminate the 

inertia forces by correcting the mass distribution of the rotor, that is, by balancing. 



The correction of the rotor mass in order to move its mass centre S to the axis of rotation is called 

static balancing (see Fig. 7.3b). Such balancing tends to reduce the resultant inertia force, acting on 

the rotor, to zero by means of an appropriate correcting mass. If, as a result of the correction, the 

rotation axis becomes one of the principal axes of inertia, then we have the so called dynamic 

balancing. Thus, this kind of balancing reduces the inertia force and the moment of the inertia force 

(acting on the rotor) to zero and it requires applying two correcting masses. 
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Fig. 7.3. Unbalanced rotor (a), static balancing (b), dynamic balancing (c) 

 

 

 

 

 

 

 

 

 



Dynamic balancing 
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Fig. 7.4. Spatial rigid rotor (a), its equivalent before (b) and after (c) balancing 

Consider a general case – a spatial rigid rotor shown in Fig. 7.4a. The rotor rotates around the axis of 

rigid bearings AB with the angular velocity ω  and the angular acceleration ε. In a Cartesian system of 

coordinates (its coordinate z overlaps with the axis of bearings), we have the following equations of 

equilibrium of the acting forces: 
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The quantities Bxz, Byz, Bzz (centrifugal mass moments of inertia) and Sx, Sy are determined by the 

formulas: 
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The rotor under consideration can be substituted by two concentrated masses m1 and m2. These masses 

are located on two arbitrarily chosen correction planes (let these be planes at a distance lk from the 

plane xy) by means of massless rods of the length r1 and r2 sloped to the plane xz at the angles α1 and 

α2, correspondingly (see Fig. 7.4b). In order to reduce the reactions in bearings to zero, it is necessary 

to apply a pair of skew centrifugal inertia forces to the rotor. These forces act on two correcting 

masses mk1 and mk2. They are fixed to the rotor in the correction planes, at a distance rk from the axis 

of rotation z, as depicted in Fig. 7.4c. The unknown values mk1 and mk2 can be calculated from Eq. 

(7.5), when the values Sx, Sy, Bxz, Byz, or their equivalents m1r1, α1, m2r2, α2, are known. 

The balancing of a real rotor of the unknown quantities Sx, Sy, Bxz, Byz can be carried out as follows: 

1) Place the rotor in the balancer and secure it. 

2) After starting the balancer, determine the radiuses r1, r2 and the angles α1, α2 determining the 

position of the masses m1, m2, where the principal central axis of inertia passes through their 

centres (see Fig. 7.5a). 
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Fig. 7.5. Stages of dynamic balancing 

3) Fasten two test weights of the arbitrary chosen masses mT on the correction planes. The fastening 

radius rk is also arbitrary – in practice it is determined by the rotor design. The fastening points of 

the weights are located opposite the points K1 and K2 (Fig. 7.5b). The fastening of the weights 

causes a change in the position of the principal central axis of inertia. Now, it crosses the 

correction planes in the points K1T and K2T, being mass centres of systems (m1 – mT) and (m2 – 

mT), at the distances being at r1T, r2T from the axis of rotation. The distances r1T, r2T have to fulfil 

the equations of equilibrium of static moments: 
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hence: 



1T1

1Tk
T1

rr

rr
mm

−

+
= , 

2T2

2Tk
T2

rr

rr
mm

−

+
= .    (7.7) 

 

4) After restarting the balancer, determine the new radiuses r1T, r2T and calculate the masses of 

correcting weights mk1, mk2 from the following formulas: 
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hence: 
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and after putting Eq. (7.7) into Eq. (7.9), we obtain: 
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Since r1T << rk and r2T << rk, Eqs. (7.10) can take the following form: 
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The application of correcting weights leads to a zero value of the balancer indications r1k = 0 and r2k = 

0. Thus, the principal central axis of inertia is reduced to the axis of rotation and the rotor is dynamically 

balanced (see Fig.  7.5c). 

 

 

3. Experiment 

 

1) Place the rotor in the balancer and secure it. 

2) Start the balancer and read out the lengths of the radiuses r1, r2 and the angles α1, α2. 

3) Stop the balancer and fasten two test weights of the arbitrary chosen masses mT on the correction 

planes. Their fixing points should be found opposite the points K1 and K2 determining the location 

of the principal central axis of inertia. 

4) Start the balancer again and determine the lengths of the radiuses r1T, r2T and the angles α1T, α2T. 

5) Calculate the masses of correcting weights mk1, mk2 on the basis of Eqs. (7.11).  

6) Remark: Since the balancer indicates the absolute values |riT| (where 

i = 1, 2), so in the case of αiT = α + 180°, the relation riT = –|riT| should be substituted in Eqs. 

(7.11). 

7) Check the value of residual unbalancing after applying the calculated correcting weights. 
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