
 
Exercise 8 

 

CRITICAL SPEEDS OF THE ROTATING SHAFT 

 

 

1. Aim of the exercise 

 

 Observation and measurement of three consecutive critical speeds and corresponding modes of the 

actual rotating shaft. Comparison of analytically computed and measured critical speed values. 

 

 

2. Theoretical introduction 

 

 The critical speed notion is associated with rotary machines and is used to describe the rotational 

speed at which an excessive increase in shaft deflections and resulting vibrations of the rotor housing can 

be observed. The critical speed occurs when the speed of rotations is equal to the natural frequency of the 

shaft. Two methods for determining natural frequencies of the shaft are presented in the theoretical 

introduction. 

 

 

2.1. Rotating shaft as a continuous system 
 

 To determine natural frequencies of the uniform shaft with the mass distributed along its length, one 

can use the beam equation of lateral vibrations in the following form:  
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µ  – mass per unit length, 

EJ – flexural stiffness of the beam. 

If we use the method of separation of variables, the formal solution to beam equation (8.1) takes the 

form:   
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The substitution of this solution in Eq. (8.1) gives: 
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To satisfy Eq. (8.5) for arbitrary x and t values, both sides of this equation have to be equal to a 

constant value denoted as k
4
: 
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Thus, one obtains two independent differential equations: 
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The homogenous solution to Eq. (8.7) has the following form: 



kxDkxCkx  B+ kx  A  = U(x) coshsinhcossin ++ , (8.10) 

where: A, B, C, D – constant quantities determined from the boundary conditions.  

For simply supported ends, the boundary conditions have the following form: 
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 Substituting solution (8.10) in boundary conditions (8.11), one receives the eigenfunction sequence in 

the form: 
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The solution to Eq. (8.8) is as follows: 
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where Kn and Ln are constant quantities determined from the initial conditions.  

 

On the basis of Eqs. (8.9) and (8.12), the natural frequencies ωn, related to successive eigenfunctions 

of the beam, can be determined from the following equation: 
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Finally, the general solution to the beam equation takes the form:  
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2.2. Rotating shaft as a discrete system. Myklestad method 
 

A complex or continuous system can be divided into finite elements or segments and thus it can be 

approximated with an equivalent discrete system. To explain this technique, one ought to introduce the 

concept of a state vector and a transfer matrix. 

A state vector is a column of numbers, whose values represent variables at a given station in the 

system. The numbers describe the state of the problem. Hence, each element of the state vector is 

called a state variable. Typical variables and their corresponding state vectors are shown in Fig. 8.1. 
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Fig. 8.1. State vectors, generalized forces and displacements for: a) tension,  

b) bending, c) torsion, d) shear. 

 

 

For example, if a combination of shear and bending occurs at the station n, the corresponding state 

vector is: 
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A transfer matrix transfers state variables from one station to another. Let us take into account a 

beam structure divided into segments. A typical segment of the beam, as shown in Fig. 8.2, consists of 

a massless span which is characterized by the bending stiffness EJ and the point mass mn. The 

superscripts L and P denote the left- and the right-hand side of the mass mn, respectively. The flexural 

properties of the segment are described by the field transfer matrix of the span and the inertial effects 

of the segment are described by the point transfer matrix of the mass. 

To describe the field transfer matrix, consider a free-body sketch of a uniform beam of the length 

Ln as shown in Fig. 8.2(b). In this case, the field transfer matrix transfers the state variables of the state 

vector {Z}P
n-1 in the left end to the state vector {Z}L

n in the right end of the span. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.2. Derivation of the transfer matrix of the beam  

 

 

For the equilibrium state, we require that: 
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where: M -  bending moment, 

  V -  shear force. 

According to Fig. 8.2(b), the change in the slope Φ  of the span is equal to: 
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After the substitution of Eq. (8.17) in (8.18) and rearrangement, we obtain:  
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The change in the deflection Y of the span is as follows: 
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After the substitution of Vn
L 

and Mn
L 

from Eq. (8.17) in (8.20) and  rearrangement, we 

get: 
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The field transfer matrix is obtained by writing Eqs. (8.17), (8.19) and (8.21) in the matrix form: 
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To derive the point transfer matrix, consider a free-body sketch of mn 

(Fig. 8.2c). The equations for the shear and the moment are as follows: 
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where Jn  - mass moment of inertia of mn about its axis normal to the (x, y) plane. 

 

For the rigid body motion of mn , the following relations are fulfilled: 
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The point transfer matrix is obtained from Eqs. (8.23) and (8.24): 
L

nn

P

n
V

M

Y

m

J

V

M

Y





































−

−
=



















φ

ω

ω

φ

100

010

0010

0001

2

0

2
.                 (8.25) 

 

Substituting {Z}n
L from Eq. (8.22) in (8.25), one receives the transfer matrix: 
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Equation (8.26) can be written in the following form:   
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where Hn is the transfer matrix of the n-th element.  

Using the recurrence formula, the state vector 
P

n
Z}{  at a typical station n can be related to the state 

vector P
Z 0}{  at the boundary of the system:      
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Equation (8.28) presents the recurrence formula which is used in the Myklestad method for the 

natural frequency calculation.  

The common boundary conditions for the beam problem are presented in  Table 8.1. 

 

    



 

 

Table 8.1. Boundary condition for the beam problem 

 

 Y φφφφ M V 

Simple support 0 φ 0 V 

Free end Y φ 0 0 

Fixed end 0 0 M V 

 

For example, the deflection Y and the moment M at a simple support have to be zero, whereas the 

slope φ and the shear force V are unknown and non-zero. At the beginning point or station 0 of the 

beam, there are two non-zero boundary conditions, dictated by the type of support. Similarly, there are 

two non-zero boundary conditions at the other end of the beam. 

The procedure of the Myklestad method for the natural frequency calculation consists in assuming 

the frequency ω  and proceeding with the computation. The process repeats until the ω value that 

satisfies simultaneously the boundary conditions at both ends of the beam is found. This ω value is the 

natural frequency. 

 

 

Example: Using the Myklestad method, find natural frequencies of the beam shown in Fig. 8.3. 

         Data: 

m = 0.222 kg, 

l = 1 m, 

d = 0.006 m,  

J = πd
4/64 = 63.6×10-12 m4,  

E = 2.1 × 1011 N/m2, 

 µ = m/l = 0.222 kg/m. 

 

 
   Fig. 8.3. Lumped-mass representation of the beam 

 

 

Solution 

 
The beam was divided into two segments of the lengths: l1 = 0.25 m and l2  =  0.75 m (Fig. 8.3). 

The mass of the first segment is concentrated at its right end. The mass of the second segment has 

been divided in two equal parts and located at its both ends. The lamped-mass representation of the 

beam: 

m1 = 0.13875 kg and  m2  = 0.08325 kg.  

In this case, recurrence formula (8.28) for the natural frequency calculation has the following form: 
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Mn  and Vn are the unknown moment and shear force at the fixed end. 

 

Applying Eq. (8.26), one receives the transfer matrices for both segments: 
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Substituting (c) and (d) in (a) in the general description, we obtain: 
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The moment M2
P and the shear force V2

P have to be zero at the free end of the beam (Table 8.1). Using 

the notations from (e), one can write these conditions in the following form: 
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For a nontrivial solution to the simultaneous homogeneous equations, the characteristic determinant of 

(f) has to vanish, that is: 
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On the basis of Eq. (g), natural frequencies of the beam can be determined. For the given data, the 

corresponding equation is as follows: 
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or, in the developed form: 

 01069,11097,35 7234 =×+×− ωω .    (i) 

 

The natural frequencies are equal to: 

 

 ω1 = 21.8 rad/s    ⇒ f1 = 3.47 Hz, 

 ω2 = 188.4 rad/s  ⇒ f2 = 30 Hz. 

 

 

3. Measurement device 

 
A scheme of the measurement device is shown in Fig. 8.4.  

 

 

 

 

 

 
           Fig. 8.4. Measurement device   
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Shaft (1) in the form of a steel rod is supported in self-aligning ball bearings (2). It is driven by 

electric motor (4) with flexible coupling (3). Both the motor and bearing housings are mounted on the 

common base. A potentiometer is used to vary the speed of the motor. A photoelectric transducer is used 

to measure the angular velocity of the shaft.  
The shaft properties are as follows: mass m = 0.222 kg, diameter d = 6 mm, length: l = 1 m. In the 

working range of the driving motor (0÷6000 rev/min), one can observe three consecutive critical speeds 

of the shaft. 

 

      

4. Course of the exercise 

 

Calculate analytically three lowest values of the critical speed of the shaft treated as a continuous 

system using the real system data presented earlier. Record the results in Table 8.2 in the ωn  column. 

Next, calculate the critical speeds of the shaft treated as a discrete system, using the Myklestad 
method. In the numerical calculations, use the DERIVE package. Calculate the critical speeds of the 

investigated shaft for different segmentations. Record the calculation results in the ωnM column of  
Table 8.2. 

In the experimental part of the exercise, measure and observe the critical speeds of the shaft. The 

critical speed occurs when the lateral deflections of the rotating shaft have extreme values. The 
measurements are to be conducted both at speeds lower than the critical one and higher than the critical 

one, but such at which no impacts against the limiters occur. Record the measurement results in Table 

8.2 and calculate the mean values.  

 

 

Table 8.2. Investigation results  

 Measured frequency 

ωp [rad/s] 

Mean 

valueω

pm 

ωn 

[rad/s] 

ωnM  

[rad/s] 

ωn/ωpm 

% 

ωnM/ωpm 

% 
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critical 

speed 

        

II 

critical 

speed 

        

III 

critical          

speed 

        

 

 

After completing the measurements, compare the measured and calculated values of critical speeds. 

Calculate the ratio ωp/ωn and write it in the last column of  Table 8.2. Make drawings of the observed 

deflection shapes of the shaft. 
 

 

5.  Laboratory report should contain: 
 

1) Aim of the exercise. 

2) Experimental and calculation results in the form of Table 8.2. 

3) Drawings of the observed deflection shapes of the shaft corresponding to the consecutive critical 

speeds. 



4) Conclusions and remarks. 
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